- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Eric R. Sundstrom; Bashar Amer; Bashar Amer; Edward E. K. Baidoo; Edward E. K. Baidoo; Lalitendu Das; Lalitendu Das; Blake A. Simmons; Blake A. Simmons; Ning Sun; Carolina Barcelos; Ezinne C. Achinivu; Ezinne C. Achinivu; John M. Gladden; John M. Gladden;Ionic liquids (ILs) have emerged as important solvents for conversion of lignocellulosic feedstocks to fuels and chemicals due to their ability to enable efficient biomass deconstruction and fractionation. Woody biomass derived from forest and agricultural residues has the potential to be used for production of biofuels and its removal from forests can help mitigate disastrous wildfires in fire-prone states like California. This study evaluated woody biomass types (pine, almond, walnut, and fir) from California as potential biofuel feedstocks. The feedstocks were pretreated with the ILs cholinium lysinate ([Ch][Lys]) and ethanolamine acetate ([EOA][OAc]), followed by enzymatic hydrolysis and fermentation of lignocellulosic sugars to produce ethanol. Under optimal conditions, [EOA][OAc] pretreatment and enzymatic hydrolysis generated glucose and xylose yields in the range of 24-82 and 14-80%, respectively, while glucose and xylose yields for the [Ch][Lys] ranged between 28-83 and 23-80%, respectively. Maximum fermentable sugar was released from almond wood, and the lowest amount was from pine and fir. Blends of feedstocks were also explored, and a blend with a mass ratio of 2/2/1 (almond/walnut/pine) resulted in maximum glucose and xylose (>90%) yields using [Ch][Lys]. Fermentation of this hydrolysate using a C5-utilizing strain of Saccharomyces cerevisiae resulted in a maximum ethanol concentration of 17.9 g/L for mixture biomass hydrolysate, corresponding to 60.8% fermentation efficiency. This study represents the first demonstration of the use of these ILs for pretreatment of woody biomass blends that resulted in a high overall conversion efficiency for ethanol production.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/61r4c30vData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/61r4c30vData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United StatesPublisher:Springer Science and Business Media LLC Maren Wehrs; Taek Soon Lee; Gabriella Papa; John M. Gladden; Gina M. Geiselman; Gina M. Geiselman; Alexander Landera; Anthe George; Anthe George; Aindrila Mukhopadhyay; Harsha D. Magurudeniya; Harsha D. Magurudeniya; Eric R. Sundstrom; Jon K. Magnuson; Blake A. Simmons; Peter B. Otoupal; Peter B. Otoupal; Lalitendu Das; Lalitendu Das; James Kirby; James Kirby; Carolina Barcelos; Alberto Rodriguez; Alberto Rodriguez;Abstract Background In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. Results We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. Conclusion Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/3x01b5n4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12934-020-01456-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/3x01b5n4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12934-020-01456-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Jie Dong; Carolina Barcelos; Ezinne C. Achinivu; Ezinne C. Achinivu; Eric R. Sundstrom; Harsha D. Magurudeniya; Harsha D. Magurudeniya; Deepti Tanjore; Nawa Raj Baral; Nawa Raj Baral; Chunsheng Yan; John M. Gladden; John M. Gladden; Asun Oka; Blake A. Simmons; Blake A. Simmons; Corinne D. Scown; Corinne D. Scown; Simay Akdemir; Jipeng Yan; Ning Sun; Lalitendu Das; Lalitendu Das;With a diverse and widely distributed global resource base, woody biomass is a compelling organic feedstock for conversion to renewable liquid fuels. In California, woody biomass comprises the largest fraction of underutilized biomass available for biofuel production, but conversion to fuels is challenged both by recalcitrance to deconstruction and by toxicity toward downstream saccharification and fermentation due to organic acids and phenolic compounds generated during pretreatment. In this study, we optimize pretreatment and scale-up of an integrated one-pot process for deconstruction of California woody biomass using the ionic liquid (IL) cholinium lysinate [Ch][Lys] as a pretreatment solvent. By evaluating the impact of solid loading, solid removal, yeast acclimatization, fermentation temperature, fermentation pH, and nutrient supplementation on final ethanol yields and titers, we achieve nearly full conversion of both glucose and xylose to ethanol with commercial C5-utilizing Saccharomyces cerevisiae. We then demonstrate process scalability in 680 L pilot-scale fermentation, achieving >80% deconstruction efficiency, >90% fermentation efficiency, 27.7 g/L ethanol titer, and >80% ethanol distillation efficiency from the IL-containing hydrolysate post fermentation. This fully integrated process requires no intermediate separations and no intermediate detoxification of the hydrolysate. Using an integrated biorefinery model, current performance results in a minimum ethanol selling price of $8.8/gge. Reducing enzyme loading along with other minor process improvements can reduce the ethanol selling price to $3/gge. This study is the largest scale demonstration of IL pretreatment and biofuel conversion known to date, and the overall biomass-to-ethanol efficiencies are the highest reported to date for any IL-based biomass-to-biofuel conversion.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Shilva Shrestha; Shubhasish Goswami; Deepanwita Banerjee; Valentina Garcia; Elizabeth Zhou; Charles N. Olmsted; Erica L.‐W. Majumder; Deepak Kumar; Deepika Awasthi; Aindrila Mukhopadhyay; Steven W. Singer; John M. Gladden; Blake A. Simmons; Hemant Choudhary;pmid: 38669480
AbstractThe valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino‐refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin‐utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino‐chemical industry.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/5xn4z21dData sources: Bielefeld Academic Search Engine (BASE)ChemSusChemArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202301460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/5xn4z21dData sources: Bielefeld Academic Search Engine (BASE)ChemSusChemArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202301460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Authors: Harsha D. Magurudeniya; Harsha D. Magurudeniya; Hemant Choudhary; Hemant Choudhary; +12 AuthorsHarsha D. Magurudeniya; Harsha D. Magurudeniya; Hemant Choudhary; Hemant Choudhary; Anthe George; Anthe George; Alberto Rodriguez; Alberto Rodriguez; Alexander Yao; John M. Gladden; John M. Gladden; Mood Mohan; Mood Mohan; Blake A. Simmons; Blake A. Simmons; Jeffrey G. Pelton;Over the last few decades, efforts to transition the global production of fuels and chemicals toward renewable carbon feedstocks have accelerated. A large portion of these efforts have focused on valorization of one of the most abundant renewable carbon sources, lignocellulose. Pretreatment of lignocellulose is the first critical step in this process. In this study, novel ionic liquid (IL) systems consisting of multiple ions known to be effective at biomass pretreatment were tested on woody and grassy biomass. Molecular simulations and experimental results established the synergistic advantages of combining specific individual components in these systems. For pine (woody) biomass, pretreatment with the combination of imidazolium, cholinium, acetate, and lysinate ions achieved 80% glucose and 70% xylose yields at high biomass loading. For sorghum biomass, an IL system comprising cholinium, lysinate, and palmitate ions not only enabled a 98% glucose yield but was also found to be biocompatible in a one-pot configuration, producing the biofuel precursor bisabolene using an engineered strain of the yeast Rhodosporidium toruloides.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/83w5k207Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/83w5k207Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Eric R. Sundstrom; Bashar Amer; Bashar Amer; Edward E. K. Baidoo; Edward E. K. Baidoo; Lalitendu Das; Lalitendu Das; Blake A. Simmons; Blake A. Simmons; Ning Sun; Carolina Barcelos; Ezinne C. Achinivu; Ezinne C. Achinivu; John M. Gladden; John M. Gladden;Ionic liquids (ILs) have emerged as important solvents for conversion of lignocellulosic feedstocks to fuels and chemicals due to their ability to enable efficient biomass deconstruction and fractionation. Woody biomass derived from forest and agricultural residues has the potential to be used for production of biofuels and its removal from forests can help mitigate disastrous wildfires in fire-prone states like California. This study evaluated woody biomass types (pine, almond, walnut, and fir) from California as potential biofuel feedstocks. The feedstocks were pretreated with the ILs cholinium lysinate ([Ch][Lys]) and ethanolamine acetate ([EOA][OAc]), followed by enzymatic hydrolysis and fermentation of lignocellulosic sugars to produce ethanol. Under optimal conditions, [EOA][OAc] pretreatment and enzymatic hydrolysis generated glucose and xylose yields in the range of 24-82 and 14-80%, respectively, while glucose and xylose yields for the [Ch][Lys] ranged between 28-83 and 23-80%, respectively. Maximum fermentable sugar was released from almond wood, and the lowest amount was from pine and fir. Blends of feedstocks were also explored, and a blend with a mass ratio of 2/2/1 (almond/walnut/pine) resulted in maximum glucose and xylose (>90%) yields using [Ch][Lys]. Fermentation of this hydrolysate using a C5-utilizing strain of Saccharomyces cerevisiae resulted in a maximum ethanol concentration of 17.9 g/L for mixture biomass hydrolysate, corresponding to 60.8% fermentation efficiency. This study represents the first demonstration of the use of these ILs for pretreatment of woody biomass blends that resulted in a high overall conversion efficiency for ethanol production.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/61r4c30vData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/61r4c30vData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United StatesPublisher:Springer Science and Business Media LLC Maren Wehrs; Taek Soon Lee; Gabriella Papa; John M. Gladden; Gina M. Geiselman; Gina M. Geiselman; Alexander Landera; Anthe George; Anthe George; Aindrila Mukhopadhyay; Harsha D. Magurudeniya; Harsha D. Magurudeniya; Eric R. Sundstrom; Jon K. Magnuson; Blake A. Simmons; Peter B. Otoupal; Peter B. Otoupal; Lalitendu Das; Lalitendu Das; James Kirby; James Kirby; Carolina Barcelos; Alberto Rodriguez; Alberto Rodriguez;Abstract Background In an effort to ensure future energy security, reduce greenhouse gas emissions and create domestic jobs, the US has invested in technologies to develop sustainable biofuels and bioproducts from renewable carbon sources such as lignocellulosic biomass. Bio-derived jet fuel is of particular interest as aviation is less amenable to electrification compared to other modes of transportation and synthetic biology provides the ability to tailor fuel properties to enhance performance. Specific energy and energy density are important properties in determining the attractiveness of potential bio-derived jet fuels. For example, increased energy content can give the industry options such as longer range, higher load or reduced takeoff weight. Energy-dense sesquiterpenes have been identified as potential next-generation jet fuels that can be renewably produced from lignocellulosic biomass. Results We developed a biomass deconstruction and conversion process that enabled the production of two tricyclic sesquiterpenes, epi-isozizaene and prespatane, from the woody biomass poplar using the versatile basidiomycete Rhodosporidium toruloides. We demonstrated terpene production at both bench and bioreactor scales, with prespatane titers reaching 1173.6 mg/L when grown in poplar hydrolysate in a 2 L bioreactor. Additionally, we examined the theoretical fuel properties of prespatane and epi-isozizaene in their hydrogenated states as blending options for jet fuel, and compared them to aviation fuel, Jet A. Conclusion Our findings indicate that prespatane and epi-isozizaene in their hydrogenated states would be attractive blending options in Jet A or other lower density renewable jet fuels as they would improve viscosity and increase their energy density. Saturated epi-isozizaene and saturated prespatane have energy densities that are 16.6 and 18.8% higher than Jet A, respectively. These results highlight the potential of R. toruloides as a production host for the sustainable and scalable production of bio-derived jet fuel blends, and this is the first report of prespatane as an alternative jet fuel.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/3x01b5n4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12934-020-01456-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/3x01b5n4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12934-020-01456-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Jie Dong; Carolina Barcelos; Ezinne C. Achinivu; Ezinne C. Achinivu; Eric R. Sundstrom; Harsha D. Magurudeniya; Harsha D. Magurudeniya; Deepti Tanjore; Nawa Raj Baral; Nawa Raj Baral; Chunsheng Yan; John M. Gladden; John M. Gladden; Asun Oka; Blake A. Simmons; Blake A. Simmons; Corinne D. Scown; Corinne D. Scown; Simay Akdemir; Jipeng Yan; Ning Sun; Lalitendu Das; Lalitendu Das;With a diverse and widely distributed global resource base, woody biomass is a compelling organic feedstock for conversion to renewable liquid fuels. In California, woody biomass comprises the largest fraction of underutilized biomass available for biofuel production, but conversion to fuels is challenged both by recalcitrance to deconstruction and by toxicity toward downstream saccharification and fermentation due to organic acids and phenolic compounds generated during pretreatment. In this study, we optimize pretreatment and scale-up of an integrated one-pot process for deconstruction of California woody biomass using the ionic liquid (IL) cholinium lysinate [Ch][Lys] as a pretreatment solvent. By evaluating the impact of solid loading, solid removal, yeast acclimatization, fermentation temperature, fermentation pH, and nutrient supplementation on final ethanol yields and titers, we achieve nearly full conversion of both glucose and xylose to ethanol with commercial C5-utilizing Saccharomyces cerevisiae. We then demonstrate process scalability in 680 L pilot-scale fermentation, achieving >80% deconstruction efficiency, >90% fermentation efficiency, 27.7 g/L ethanol titer, and >80% ethanol distillation efficiency from the IL-containing hydrolysate post fermentation. This fully integrated process requires no intermediate separations and no intermediate detoxification of the hydrolysate. Using an integrated biorefinery model, current performance results in a minimum ethanol selling price of $8.8/gge. Reducing enzyme loading along with other minor process improvements can reduce the ethanol selling price to $3/gge. This study is the largest scale demonstration of IL pretreatment and biofuel conversion known to date, and the overall biomass-to-ethanol efficiencies are the highest reported to date for any IL-based biomass-to-biofuel conversion.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Wiley Shilva Shrestha; Shubhasish Goswami; Deepanwita Banerjee; Valentina Garcia; Elizabeth Zhou; Charles N. Olmsted; Erica L.‐W. Majumder; Deepak Kumar; Deepika Awasthi; Aindrila Mukhopadhyay; Steven W. Singer; John M. Gladden; Blake A. Simmons; Hemant Choudhary;pmid: 38669480
AbstractThe valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino‐refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin‐utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino‐chemical industry.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/5xn4z21dData sources: Bielefeld Academic Search Engine (BASE)ChemSusChemArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202301460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/5xn4z21dData sources: Bielefeld Academic Search Engine (BASE)ChemSusChemArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202301460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Authors: Harsha D. Magurudeniya; Harsha D. Magurudeniya; Hemant Choudhary; Hemant Choudhary; +12 AuthorsHarsha D. Magurudeniya; Harsha D. Magurudeniya; Hemant Choudhary; Hemant Choudhary; Anthe George; Anthe George; Alberto Rodriguez; Alberto Rodriguez; Alexander Yao; John M. Gladden; John M. Gladden; Mood Mohan; Mood Mohan; Blake A. Simmons; Blake A. Simmons; Jeffrey G. Pelton;Over the last few decades, efforts to transition the global production of fuels and chemicals toward renewable carbon feedstocks have accelerated. A large portion of these efforts have focused on valorization of one of the most abundant renewable carbon sources, lignocellulose. Pretreatment of lignocellulose is the first critical step in this process. In this study, novel ionic liquid (IL) systems consisting of multiple ions known to be effective at biomass pretreatment were tested on woody and grassy biomass. Molecular simulations and experimental results established the synergistic advantages of combining specific individual components in these systems. For pine (woody) biomass, pretreatment with the combination of imidazolium, cholinium, acetate, and lysinate ions achieved 80% glucose and 70% xylose yields at high biomass loading. For sorghum biomass, an IL system comprising cholinium, lysinate, and palmitate ions not only enabled a 98% glucose yield but was also found to be biocompatible in a one-pot configuration, producing the biofuel precursor bisabolene using an engineered strain of the yeast Rhodosporidium toruloides.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/83w5k207Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/83w5k207Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c09330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu