- home
- Advanced Search
- Energy Research
- 3. Good health
- Energy Research
- 3. Good health
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Abdulelah Aljaafari; I. M. R. Fattah; M. I. Jahirul; Yuantong Gu; T. M. I. Mahlia; Md. Ariful Islam; Mohammad S. Islam;doi: 10.3390/en15186854
Biodiesel is an alternative source of fuel for various automotive applications. Because of the increasing demand for energy and the scarcity of fossil fuels, researchers have turned their attention to biodiesel production from various sources in recent years. The production of biofuels from organic materials and waste components allows for the use of these waste resources in transporting resources and people over long distances. As a result, developing sustainable measures for this aspect of life is critical, as knowledge of appropriate fuel sources, corresponding emissions, and health impacts will benefit the environment and public health assessment, which is currently lacking in the literature. This study investigates biodiesel’s composition and production process, in addition to biodiesel emissions and their associated health effects. Based on the existing literature, a detailed analysis of biodiesel production from vegetable oil crops and emissions was undertaken. This study also considered vegetable oil sources, such as food crops, which can have a substantial impact on the environment if suitable growing procedures are not followed. Incorporating biodegradable fuels as renewable and sustainable solutions decreases pollution to the environment. The effects of biodiesel exhaust gas and particulates on human health were also examined. According to epidemiologic studies, those who have been exposed to diesel exhaust have a 1.2–1.5 times higher risk of developing lung cancer than those who have not. In addition, for every 24 parts per billion increase in NO2 concentration, symptom prevalence increases 2.7-fold. Research also suggests that plain biodiesel combustion emissions are more damaging than petroleum diesel fuel combustion emissions. A comprehensive analysis of biodiesel production, emissions, and health implications would advance this field’s understanding.
Energies arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Suryani Suryani; Sariani Sariani; Femi Earnestly; Marganof Marganof; Rahmawati Rahmawati; Sevindrajuta Sevindrajuta; Teuku Meurah Indra Mahlia; Ahmad Fudholi;doi: 10.3390/pr8040402
This research aims to study the unique factors of virgin coconut oil (VCO) compared with coconut oil (i.e., coconut oil processed through heating the coconut milk and palm oil sold on the market). Its novelty is that it (VCO) contains lactic acid bacteria and bacteriocin. Lauric acid content was analyzed by the Chromatographic Gas method. Isolation of lactic acid bacteria (LAB) was conducted by the dilution method using MRSA + 0.5% CaCO3 media. Iodium number, peroxide, and %FFA were analyzed using a general method, and isolation bacteriocin by the deposition method using ammonium sulfate. In addition, macromolecular identification was conducted by 16S rRNA. VCO was distinguished by a higher content of lauric acid (C12:0) 41%–54.5% as compared with 0% coconut and 0, 1% palm oil, respectively. The VCO also contains LAB, namely Lactobacillus plantarum and Lactobacillus paracasei, and can inhibit the growth of pathogenic bacteria, such as Pseudomonas aeruginosa, Klebsiella, Staphylococcus aureus, S. epidermidis, Proteus, Escherichia coli, Listeria monocytogenes, Bacillus cereus, Salmonella typhosa and bacteriocin. Comparison with VCO is based on having a high content of lauric acid, 54%, and LAB content. The difference between VCO and coconut oil and palm oil is fatty acids. In VCO there are lauric acid and stearic acid, namely lauric acid VCO (A) 54.06%, VCO (B) 53.9% and VCO (C) 53.7%. The content of stearic acid VCO (A) is 12.03%, VCO (B) 12.01% and VCO (C) 11.9%. Coconut oil contains a little lauric acid, which is 2.81%, stearic acid 2.65% and palmitic acid 2.31%. Palm oil can be said to have very little lauric acid, namely in palm oil 1, 0.45%, and even in palm oil 2, 0%; in turn, palmitic acid palm oil 1 has 2.88% and palm oil 2 palmitic acid has 24.42%.
Processes arrow_drop_down ProcessesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2227-9717/8/4/402/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8040402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2227-9717/8/4/402/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8040402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG M. A. Hannan; M. S. Abd Rahman; Ali Q. Al-Shetwi; R. A. Begum; Pin Jern Ker; M. Mansor; M. S. Mia; M. J. Hossain; Z. Y. Dong; T. M. I. Mahlia;doi: 10.3390/su142315576
handle: 10072/429556
The COVID-19 pandemic has affected every sector in the world, ranging from the education sector to the health sector, administration sector, economic sector and others in different ways. Multiple kinds of research have been performed by research centres, education institutions and research groups to determine the extent of how huge of a threat the COVID-19 pandemic poses to each sector. However, detailed analysis and assessment of its impact on every single target within the 17 Sustainable Development Goals (SDGs) have not been discussed so far. We report an assessment of the impact of COVID-19 effect towards achieving the United Nations SDGs. In assessing the pandemic effects, an expert elicitation model is used to show how the COVID-19 severity affects the positive and negative impact on the 169 targets of 17 SDGs under environment, society and economy groups. We found that the COVID-19 pandemic has a low positive impact in achieving only 34 (20.12%) targets across the available SDGs and a high negative impact of 54 targets (31.95%) in which the most affected group is the economy and society. The environmental group is affected less; rather it helps to achieve a few targets within this group. Our elicitation model indicates that the assessment process effectively measures the mapping of the COVID-19 pandemic impact on achieving the SDGs. This assessment identifies that the COVID-19 pandemic acts mostly as a threat in enabling the targets of the SDGs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429556Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429556Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Teuku Meurah Indra Mahlia;Emissions in the process utilization produce adverse effects on the environment that influence human health, organism growth, climatic changes and so on. The Kyoto protocol, produced by the United Nations Framework Convention on Climate change (UNFCC) in December 1997, prescribed a legally binding greenhouse gas emission target about 5% below their 1990 level. About 160 countries including Malaysia now adopt this protocol. Electricity generation is one of the main contributors to emissions in the country. In order to calculate the potential emissions produced by this activity, the type of fuel use should be identified. Malaysia hopes to gradually change fuel use from 70% gas, 15% coal, 10% hydro, and 5% petroleum in the year 2000 to 40% gas, 30% hydro, 29% coal, and only 1% petroleum by the year 2020. The changes in fuel type have changed the pattern of emission production. This study attempts to predict the pattern of emissions from 2002 to 2020 due to the changes in fuel use. The calculation is based on emissions for unit electricity generated and the percentages of fuel use for electricity generation. The study found that the electricity generation company has produced huge emissions from their power plants in this country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(01)00177-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(01)00177-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:MDPI AG Funded by:FCT | LA 4FCT| LA 4Authors: S. M. Ashrafur Rahman; I. M. Rizwanul Fattah; Hwai Chyuan Ong; Fajle Rabbi Ashik; +7 AuthorsS. M. Ashrafur Rahman; I. M. Rizwanul Fattah; Hwai Chyuan Ong; Fajle Rabbi Ashik; Mohammad Mahmudul Hassan; Md Tausif Murshed; Md Ashraful Imran; Md Hamidur Rahman; Md Akibur Rahman; Mohammad Al Mahdi Hasan; T. M. Indra Mahlia;doi: 10.3390/en14144195
Air pollution caused by vehicle emissions has raised serious public health concerns. Vehicle emissions generally depend on many factors, such as the nature of the vehicle, driving style, traffic conditions, emission control technologies, and operational conditions. Concerns about the certification cycles used by various regulatory authorities are growing due to the difference in emission during certification procedure and Real Driving Emissions (RDE). Under laboratory conditions, certification tests are performed in a ‘chassis dynamometer’ for light-duty vehicles (LDVs) and an ‘engine dynamometer’ for heavy-duty vehicles (HDVs). As a result, the test drive cycles used to measure the automotive emissions do not correctly reflect the vehicle’s real-world driving pattern. Consequently, the RDE regulation is being phased in to reduce the disparity between type approval and vehicle’s real-world emissions. According to this review, different variables such as traffic signals, driving dynamics, congestions, altitude, ambient temperature, and so on have a major influence on actual driving pollution. Aside from that, cold-start and hot-start have been shown to have an effect on on-road pollution. Contrary to common opinion, new technology such as start-stop systems boost automotive emissions rather than decreasing them owing to unfavourable conditions from the point of view of exhaust emissions and exhaust after-treatment systems. In addition, the driving dynamics are not represented in the current laboratory-based test procedures. As a result, it is critical to establish an on-road testing protocol to obtain a true representation of vehicular emissions and reduce emissions to a standard level. The incorporation of RDE clauses into certification procedures would have a positive impact on global air quality.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Hamdani Hamdani; Fajar Salamul Sabri; Harapan Harapan; Maimun Syukri; Razali Razali; Rudi Kurniawan; Irwansyah Irwansyah; Sarwo Edhy Sofyan; Teuku Meurah Indra Mahlia; Samsul Rizal;doi: 10.3390/su141811537
The controlled environment room, called an isolation room, has become a must have for medical facilities, due to the spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to isolate the high risk infected patients. To avoid the transmission of the virus through airborne routes, guidelines were published by the government and the association. A medical facility must comply with this document for high-risk patient treatment. A full-scale N class isolation room was built at Syiah Kuala University to investigate the performance in terms of the controller, temperature, pressure, humidity, and energy consumption. The isolation room was equipped with a proper capacity heating, ventilating, and air conditioning (HVAC) system, which consisted of an air conditioning compressor and a negative pressure generator (NPG), and its installation was ensured to fulfil the guidelines. Since the current NPG was controlled manually, a computer-based control system was designed, implemented, and compared with the manual control. The results showed that the computer-based control outputs better stability of pressure and electric power. For that reason, a computer-based control was chosen in the real case. To investigate the performance of the isolation room, a 24 h experiment was carried out under different parameter setups. The results showed that improvement of the control strategy for temperature and humidity is still necessary. The energy consumption during the activation of the NPG for the recommended negative pressure was slightly different. An additional piece of equipment to absorb the heat from the exhaust air would be promising to improve the energy efficiency.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Elsevier BV Mofijur, M.; Fattah, I. M.Rizwanul; Alam, Md Asraful; Islam, A. B.M.Saiful; Ong, Hwai Chyuan; Rahman, S. M.Ashrafur; Najafi, G.; Ahmed, S. F.; Uddin, Md Alhaz; Mahlia, T. M.I.;COVID-19 has heightened human suffering, undermined the economy, turned the lives of billions of people around the globe upside down, and significantly affected the health, economic, environmental and social domains. This study aims to provide a comprehensive analysis of the impact of the COVID-19 outbreak on the ecological domain, the energy sector, society and the economy and investigate the global preventive measures taken to reduce the transmission of COVID-19. This analysis unpacks the key responses to COVID-19, the efficacy of current initiatives, and summarises the lessons learnt as an update on the information available to authorities, business and industry. This review found that a 72-hour delay in the collection and disposal of waste from infected households and quarantine facilities is crucial to controlling the spread of the virus. Broad sector by sector plans for socio-economic growth as well as a robust entrepreneurship-friendly economy is needed for the business to be sustainable at the peak of the pandemic. The socio-economic crisis has reshaped investment in energy and affected the energy sector significantly with most investment activity facing disruption due to mobility restrictions. Delays in energy projects are expected to create uncertainty in the years ahead. This report will benefit governments, leaders, energy firms and customers in addressing a pandemic-like situation in the future.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseSustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2020.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 446 citations 446 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseSustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2020.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Abdulelah Aljaafari; I. M. R. Fattah; M. I. Jahirul; Yuantong Gu; T. M. I. Mahlia; Md. Ariful Islam; Mohammad S. Islam;doi: 10.3390/en15186854
Biodiesel is an alternative source of fuel for various automotive applications. Because of the increasing demand for energy and the scarcity of fossil fuels, researchers have turned their attention to biodiesel production from various sources in recent years. The production of biofuels from organic materials and waste components allows for the use of these waste resources in transporting resources and people over long distances. As a result, developing sustainable measures for this aspect of life is critical, as knowledge of appropriate fuel sources, corresponding emissions, and health impacts will benefit the environment and public health assessment, which is currently lacking in the literature. This study investigates biodiesel’s composition and production process, in addition to biodiesel emissions and their associated health effects. Based on the existing literature, a detailed analysis of biodiesel production from vegetable oil crops and emissions was undertaken. This study also considered vegetable oil sources, such as food crops, which can have a substantial impact on the environment if suitable growing procedures are not followed. Incorporating biodegradable fuels as renewable and sustainable solutions decreases pollution to the environment. The effects of biodiesel exhaust gas and particulates on human health were also examined. According to epidemiologic studies, those who have been exposed to diesel exhaust have a 1.2–1.5 times higher risk of developing lung cancer than those who have not. In addition, for every 24 parts per billion increase in NO2 concentration, symptom prevalence increases 2.7-fold. Research also suggests that plain biodiesel combustion emissions are more damaging than petroleum diesel fuel combustion emissions. A comprehensive analysis of biodiesel production, emissions, and health implications would advance this field’s understanding.
Energies arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Suryani Suryani; Sariani Sariani; Femi Earnestly; Marganof Marganof; Rahmawati Rahmawati; Sevindrajuta Sevindrajuta; Teuku Meurah Indra Mahlia; Ahmad Fudholi;doi: 10.3390/pr8040402
This research aims to study the unique factors of virgin coconut oil (VCO) compared with coconut oil (i.e., coconut oil processed through heating the coconut milk and palm oil sold on the market). Its novelty is that it (VCO) contains lactic acid bacteria and bacteriocin. Lauric acid content was analyzed by the Chromatographic Gas method. Isolation of lactic acid bacteria (LAB) was conducted by the dilution method using MRSA + 0.5% CaCO3 media. Iodium number, peroxide, and %FFA were analyzed using a general method, and isolation bacteriocin by the deposition method using ammonium sulfate. In addition, macromolecular identification was conducted by 16S rRNA. VCO was distinguished by a higher content of lauric acid (C12:0) 41%–54.5% as compared with 0% coconut and 0, 1% palm oil, respectively. The VCO also contains LAB, namely Lactobacillus plantarum and Lactobacillus paracasei, and can inhibit the growth of pathogenic bacteria, such as Pseudomonas aeruginosa, Klebsiella, Staphylococcus aureus, S. epidermidis, Proteus, Escherichia coli, Listeria monocytogenes, Bacillus cereus, Salmonella typhosa and bacteriocin. Comparison with VCO is based on having a high content of lauric acid, 54%, and LAB content. The difference between VCO and coconut oil and palm oil is fatty acids. In VCO there are lauric acid and stearic acid, namely lauric acid VCO (A) 54.06%, VCO (B) 53.9% and VCO (C) 53.7%. The content of stearic acid VCO (A) is 12.03%, VCO (B) 12.01% and VCO (C) 11.9%. Coconut oil contains a little lauric acid, which is 2.81%, stearic acid 2.65% and palmitic acid 2.31%. Palm oil can be said to have very little lauric acid, namely in palm oil 1, 0.45%, and even in palm oil 2, 0%; in turn, palmitic acid palm oil 1 has 2.88% and palm oil 2 palmitic acid has 24.42%.
Processes arrow_drop_down ProcessesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2227-9717/8/4/402/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8040402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2227-9717/8/4/402/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr8040402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG M. A. Hannan; M. S. Abd Rahman; Ali Q. Al-Shetwi; R. A. Begum; Pin Jern Ker; M. Mansor; M. S. Mia; M. J. Hossain; Z. Y. Dong; T. M. I. Mahlia;doi: 10.3390/su142315576
handle: 10072/429556
The COVID-19 pandemic has affected every sector in the world, ranging from the education sector to the health sector, administration sector, economic sector and others in different ways. Multiple kinds of research have been performed by research centres, education institutions and research groups to determine the extent of how huge of a threat the COVID-19 pandemic poses to each sector. However, detailed analysis and assessment of its impact on every single target within the 17 Sustainable Development Goals (SDGs) have not been discussed so far. We report an assessment of the impact of COVID-19 effect towards achieving the United Nations SDGs. In assessing the pandemic effects, an expert elicitation model is used to show how the COVID-19 severity affects the positive and negative impact on the 169 targets of 17 SDGs under environment, society and economy groups. We found that the COVID-19 pandemic has a low positive impact in achieving only 34 (20.12%) targets across the available SDGs and a high negative impact of 54 targets (31.95%) in which the most affected group is the economy and society. The environmental group is affected less; rather it helps to achieve a few targets within this group. Our elicitation model indicates that the assessment process effectively measures the mapping of the COVID-19 pandemic impact on achieving the SDGs. This assessment identifies that the COVID-19 pandemic acts mostly as a threat in enabling the targets of the SDGs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429556Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429556Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Teuku Meurah Indra Mahlia;Emissions in the process utilization produce adverse effects on the environment that influence human health, organism growth, climatic changes and so on. The Kyoto protocol, produced by the United Nations Framework Convention on Climate change (UNFCC) in December 1997, prescribed a legally binding greenhouse gas emission target about 5% below their 1990 level. About 160 countries including Malaysia now adopt this protocol. Electricity generation is one of the main contributors to emissions in the country. In order to calculate the potential emissions produced by this activity, the type of fuel use should be identified. Malaysia hopes to gradually change fuel use from 70% gas, 15% coal, 10% hydro, and 5% petroleum in the year 2000 to 40% gas, 30% hydro, 29% coal, and only 1% petroleum by the year 2020. The changes in fuel type have changed the pattern of emission production. This study attempts to predict the pattern of emissions from 2002 to 2020 due to the changes in fuel use. The calculation is based on emissions for unit electricity generated and the percentages of fuel use for electricity generation. The study found that the electricity generation company has produced huge emissions from their power plants in this country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(01)00177-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(01)00177-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:MDPI AG Funded by:FCT | LA 4FCT| LA 4Authors: S. M. Ashrafur Rahman; I. M. Rizwanul Fattah; Hwai Chyuan Ong; Fajle Rabbi Ashik; +7 AuthorsS. M. Ashrafur Rahman; I. M. Rizwanul Fattah; Hwai Chyuan Ong; Fajle Rabbi Ashik; Mohammad Mahmudul Hassan; Md Tausif Murshed; Md Ashraful Imran; Md Hamidur Rahman; Md Akibur Rahman; Mohammad Al Mahdi Hasan; T. M. Indra Mahlia;doi: 10.3390/en14144195
Air pollution caused by vehicle emissions has raised serious public health concerns. Vehicle emissions generally depend on many factors, such as the nature of the vehicle, driving style, traffic conditions, emission control technologies, and operational conditions. Concerns about the certification cycles used by various regulatory authorities are growing due to the difference in emission during certification procedure and Real Driving Emissions (RDE). Under laboratory conditions, certification tests are performed in a ‘chassis dynamometer’ for light-duty vehicles (LDVs) and an ‘engine dynamometer’ for heavy-duty vehicles (HDVs). As a result, the test drive cycles used to measure the automotive emissions do not correctly reflect the vehicle’s real-world driving pattern. Consequently, the RDE regulation is being phased in to reduce the disparity between type approval and vehicle’s real-world emissions. According to this review, different variables such as traffic signals, driving dynamics, congestions, altitude, ambient temperature, and so on have a major influence on actual driving pollution. Aside from that, cold-start and hot-start have been shown to have an effect on on-road pollution. Contrary to common opinion, new technology such as start-stop systems boost automotive emissions rather than decreasing them owing to unfavourable conditions from the point of view of exhaust emissions and exhaust after-treatment systems. In addition, the driving dynamics are not represented in the current laboratory-based test procedures. As a result, it is critical to establish an on-road testing protocol to obtain a true representation of vehicular emissions and reduce emissions to a standard level. The incorporation of RDE clauses into certification procedures would have a positive impact on global air quality.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Hamdani Hamdani; Fajar Salamul Sabri; Harapan Harapan; Maimun Syukri; Razali Razali; Rudi Kurniawan; Irwansyah Irwansyah; Sarwo Edhy Sofyan; Teuku Meurah Indra Mahlia; Samsul Rizal;doi: 10.3390/su141811537
The controlled environment room, called an isolation room, has become a must have for medical facilities, due to the spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to isolate the high risk infected patients. To avoid the transmission of the virus through airborne routes, guidelines were published by the government and the association. A medical facility must comply with this document for high-risk patient treatment. A full-scale N class isolation room was built at Syiah Kuala University to investigate the performance in terms of the controller, temperature, pressure, humidity, and energy consumption. The isolation room was equipped with a proper capacity heating, ventilating, and air conditioning (HVAC) system, which consisted of an air conditioning compressor and a negative pressure generator (NPG), and its installation was ensured to fulfil the guidelines. Since the current NPG was controlled manually, a computer-based control system was designed, implemented, and compared with the manual control. The results showed that the computer-based control outputs better stability of pressure and electric power. For that reason, a computer-based control was chosen in the real case. To investigate the performance of the isolation room, a 24 h experiment was carried out under different parameter setups. The results showed that improvement of the control strategy for temperature and humidity is still necessary. The energy consumption during the activation of the NPG for the recommended negative pressure was slightly different. An additional piece of equipment to absorb the heat from the exhaust air would be promising to improve the energy efficiency.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Elsevier BV Mofijur, M.; Fattah, I. M.Rizwanul; Alam, Md Asraful; Islam, A. B.M.Saiful; Ong, Hwai Chyuan; Rahman, S. M.Ashrafur; Najafi, G.; Ahmed, S. F.; Uddin, Md Alhaz; Mahlia, T. M.I.;COVID-19 has heightened human suffering, undermined the economy, turned the lives of billions of people around the globe upside down, and significantly affected the health, economic, environmental and social domains. This study aims to provide a comprehensive analysis of the impact of the COVID-19 outbreak on the ecological domain, the energy sector, society and the economy and investigate the global preventive measures taken to reduce the transmission of COVID-19. This analysis unpacks the key responses to COVID-19, the efficacy of current initiatives, and summarises the lessons learnt as an update on the information available to authorities, business and industry. This review found that a 72-hour delay in the collection and disposal of waste from infected households and quarantine facilities is crucial to controlling the spread of the virus. Broad sector by sector plans for socio-economic growth as well as a robust entrepreneurship-friendly economy is needed for the business to be sustainable at the peak of the pandemic. The socio-economic crisis has reshaped investment in energy and affected the energy sector significantly with most investment activity facing disruption due to mobility restrictions. Delays in energy projects are expected to create uncertainty in the years ahead. This report will benefit governments, leaders, energy firms and customers in addressing a pandemic-like situation in the future.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseSustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2020.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 446 citations 446 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseSustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Sydney: Sydney eScholarship RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2020.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu