- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Aneta Sapińska-Śliwa; Tomasz Kowalski; Tomasz Sliwa; Dominik Cekus;doi: 10.3390/en14165119
Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Aneta Sapińska-Śliwa; Tomasz Wysogląd; Izabela Konopka; Tomasz Sliwa; Tomasz Kowalski;doi: 10.3390/en14041190
The development of civilization, and subsequent increase in the number of new buildings, poses engineering problems which are progressively more difficult to solve, especially in the field of geotechnics and geoengineering. When designing new facilities, particular attention should be paid to environmental aspects, and thus any new facility should be a passive building, fully self-sufficient in energy. The use of load-bearing energy piles could be a solution. This article presents research on the cement slurry formulas with the addition of graphite and graphene, that can be used as a material for load-bearing piles. The proposed solution is to introduce U-tubes into the pile to exchange heat with the rock mass (the so-called energy piles). A comparison of four slurry formulas is presented: the first one consisting mainly of cement (CEM I), graphite, and water, and the remaining three with different percentages of graphene relative to the weight of dry cement. The results could contribute to the industrial application of those formulas in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Tomasz Sliwa; Kinga Jarosz; Marc A. Rosen; Anna Sojczyńska; Aneta Sapińska-Śliwa; Andrzej Gonet; Karolina Fąfera; Tomasz Kowalski; Martyna Ciepielowska;doi: 10.3390/en13112716
The relation between rotation speed, air pressure and the velocity of air-rotary drilling using the down the hole method is determined in an empirical manner. For the study, velocity measurements are obtained for combinations of the aforementioned parameters during fieldwork for the installation of borehole heat exchangers near Lublin, Poland. The tests consider three drill bit diameters—110, 127 and 140 mm; three rotational speeds—20, 40 and 60 1/min; and three air pressures—16, 20 and 24 bar. The borehole heat exchangers need 100 m deep wells. The lithology consists mainly of loess and clays to 24 m, sand and carbonate rocks to 36 m, and marls and limestone to 100 m. It is found that the highest drilling velocity is achieved when the greatest pressure is applied, while the lowest drilling velocity is connected to the lowest pressure. However, the relation between rotation speed and drilling velocity is more complex, as drilling velocity seems to be more affected by depth. Therefore, lithology can be a major factor. The results may find direct use in drilling, and provide a basis for further studies on the optimization of drilling technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Abdelazim Abbas Ahmed; Mohsen Assadi; Adib Kalantar; Aneta Sapińska-Śliwa; Tomasz Sliwa; Naveed Ahmed; Szymon Rogozik;Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2023.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2023.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Abdelazim Abbas Ahmed; Mohsen Assadi; Adib Kalantar; Tomasz Sliwa; Aneta Sapińska-Śliwa;doi: 10.3390/en15124281
The reduction of CO2 emissions has become a global concern. In this regard, the EU intends to cut CO2 emissions by 55% by 2030 compared to those of 1990. The utilization of shallow geothermal energy (SGE) in EU countries is considered the most effective measure for decarbonizing heating and cooling. SGE systems utilize heat energy collected from the earth’s crust to provide secure, clean, and ubiquitous energy. This paper provides a literature review on the use of SGE for heating and cooling purposes. The latest advances in materials, new innovative structures, and techno-economic optimization approaches have been discussed in detail. Shallow geothermal energy’s potential is first introduced, and the innovative borehole structures to improve performance and reduce installation cost is outlined. This is followed by an extensive survey of different types of conventional and thermally enhanced collectors and grouts. Attention is mainly given to the techno-economic analysis and optimization approaches. In published case studies, the least economic break-even point against fossil fuel-based heating systems occurs within 2.5 to 17 years, depending on the local geological conditions, installation efficiency, energy prices, and subsidy. Ground source heat pumps’ cost-effectiveness could be improved through market maturity, increased efficiency, cheap electricity, and good subsidy programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Krzysztof Seńczuk; Aneta Sapińska-Śliwa; Tomasz Kowalski;doi: 10.3390/en15197033
Research on the utilization of the Earth’s heat focuses mainly on effective sourcing of energy accumulated in rock mass. One of the most important parameters is thermal conductivity, which can be modified using various compositions of cement grouts. Hardened cement slurry is intended to improve thermal conductivity. It should function as a sort of extension of the rock mass to the outer diameter of heat exchanger tubes. Regardless of the thermal conductivity of the rock, high conductivity of the grout increases the energy efficiency of the BHE. Heat accumulated in the rock mass can be extracted using borehole heat exchangers (BHE), in which high thermal conductivity of cement slurry is wanted over the entire length of the exchanger. Generally, in case of deep borehole heat exchangers (DBHE), it is recommended to use two types of cement slurry, one with reduced thermal conductivity in the upper part of the exchanger and grout with increased thermal conductivity in its lower part. When cementing geothermal wells, cement grout with decreased thermal conductivity along the entire length of the borehole is most commonly used. Geothermal boreholes extract geothermal water which, at the surface, is used for heating, for example. Then, after use, the cooled water is injected through injection holes. In this article, two different basalt dusts are examined. These dusts were obtained by crushing basalt boulders in open-pit mines. They were examined for their effect on thermal conductivity when added to grout. According to the Polish Ordinance of the Minister of Environment dated 9 December 2014 regarding the waste catalogue, they were classified as waste. The materials, named basalt dust A and basalt dust B, were used to create cement slurries with a water–cement ratio of 0.5–0.7 with a wide range of percentage concentration of basalt dust. The test results show that as concentrations in the slurry increase, the values of thermal conductivity and strength decrease. This correlation occurred for both tested additives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Anna Sojczyńska; Aneta Sapińska-Śliwa; Tomasz Kowalski; Andrzej Gonet; Tomasz Sliwa;doi: 10.3390/en14113251
Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Aneta Sapińska-Śliwa; Andrzej Gonet; Marek Jaszczur; Inga Polepszyc;The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-017-0913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-017-0913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tomasz Sliwa; Aneta Sapińska-Śliwa; Michał Korzec; Andrzej Gonet; Marek Jaszczur; Martyna Ciepielowska; Artur Gajdosz;doi: 10.3390/en14102734
The rotary-percussion drilling method is a prospective way to decrease drilling costs. It is obvious, based on literature analyses and finished geothermal drilling, that the Lublin Basin can be perceived as the one where rotary-percussion drilling can be used to drill an overburden of shale rocks. The paper explained the geology of the Lublin Basin, its’ geological structures, and the possibility of the use of drilling with a down-the-hole hammer, which could significantly decrease the cost of the whole shale gas drilling investment. Data collected from the wells drilled in the Lublin Basin were compared and analyzed to determine the viability of rotary-percussion drilling. Provided analyses showed that using the rotary-percussion drilling method in the Lublin Basin had a greater possibility of application than in other Polish shale basins (Baltic and Podlasie).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tomasz Sliwa; Patryk Leśniak; Aneta Sapińska-Śliwa; Marc A. Rosen;doi: 10.3390/en15031152
Investigating the constructions of borehole heat exchangers with high efficiency (unit heat transfer between the heat carrier and ground) is important. One of the means to improve efficiency is the use of the most efficient construction of the borehole heat exchanger. The paper describes research on borehole heat exchangers’ thermal efficiency, which is mainly characterized by parameters obtained from a thermal response test: effective thermal conductivity and borehole thermal resistivity. The borehole heat exchangers of the Laboratory of Geoenergetics in Poland were studied. Based on thermal response test interpretation and empirical equations, one of which is proprietary, the heat transfer is calculated independent of the duration of the thermal response test. Other conditions for using borehole heat exchangers in downtowns are discussed. The research aims to determine the best borehole heat exchanger design from five basic possibilities studied. A lack of unequivocal statements regarding this matter in the literature was observed. The influence of the interpretation method on the research results is determined. A single U-tube system filled with gravel is shown to be the most advantageous design by a very small margin. The applied interpretation methods, however, confirm the hitherto ambiguity in the selection of the best construction. The maximum heat carrier temperature at the end of thermal response tests was 32 °C for a geological profile mostly made up of clay (low thermal conductivity) and 23 °C for Carpathian flysch (sandstones and shales, with a higher value of conductivity).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Aneta Sapińska-Śliwa; Tomasz Kowalski; Tomasz Sliwa; Dominik Cekus;doi: 10.3390/en14165119
Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Aneta Sapińska-Śliwa; Tomasz Wysogląd; Izabela Konopka; Tomasz Sliwa; Tomasz Kowalski;doi: 10.3390/en14041190
The development of civilization, and subsequent increase in the number of new buildings, poses engineering problems which are progressively more difficult to solve, especially in the field of geotechnics and geoengineering. When designing new facilities, particular attention should be paid to environmental aspects, and thus any new facility should be a passive building, fully self-sufficient in energy. The use of load-bearing energy piles could be a solution. This article presents research on the cement slurry formulas with the addition of graphite and graphene, that can be used as a material for load-bearing piles. The proposed solution is to introduce U-tubes into the pile to exchange heat with the rock mass (the so-called energy piles). A comparison of four slurry formulas is presented: the first one consisting mainly of cement (CEM I), graphite, and water, and the remaining three with different percentages of graphene relative to the weight of dry cement. The results could contribute to the industrial application of those formulas in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Tomasz Sliwa; Kinga Jarosz; Marc A. Rosen; Anna Sojczyńska; Aneta Sapińska-Śliwa; Andrzej Gonet; Karolina Fąfera; Tomasz Kowalski; Martyna Ciepielowska;doi: 10.3390/en13112716
The relation between rotation speed, air pressure and the velocity of air-rotary drilling using the down the hole method is determined in an empirical manner. For the study, velocity measurements are obtained for combinations of the aforementioned parameters during fieldwork for the installation of borehole heat exchangers near Lublin, Poland. The tests consider three drill bit diameters—110, 127 and 140 mm; three rotational speeds—20, 40 and 60 1/min; and three air pressures—16, 20 and 24 bar. The borehole heat exchangers need 100 m deep wells. The lithology consists mainly of loess and clays to 24 m, sand and carbonate rocks to 36 m, and marls and limestone to 100 m. It is found that the highest drilling velocity is achieved when the greatest pressure is applied, while the lowest drilling velocity is connected to the lowest pressure. However, the relation between rotation speed and drilling velocity is more complex, as drilling velocity seems to be more affected by depth. Therefore, lithology can be a major factor. The results may find direct use in drilling, and provide a basis for further studies on the optimization of drilling technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Abdelazim Abbas Ahmed; Mohsen Assadi; Adib Kalantar; Aneta Sapińska-Śliwa; Tomasz Sliwa; Naveed Ahmed; Szymon Rogozik;Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2023.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy for Sustainab... arrow_drop_down Energy for Sustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2023.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Abdelazim Abbas Ahmed; Mohsen Assadi; Adib Kalantar; Tomasz Sliwa; Aneta Sapińska-Śliwa;doi: 10.3390/en15124281
The reduction of CO2 emissions has become a global concern. In this regard, the EU intends to cut CO2 emissions by 55% by 2030 compared to those of 1990. The utilization of shallow geothermal energy (SGE) in EU countries is considered the most effective measure for decarbonizing heating and cooling. SGE systems utilize heat energy collected from the earth’s crust to provide secure, clean, and ubiquitous energy. This paper provides a literature review on the use of SGE for heating and cooling purposes. The latest advances in materials, new innovative structures, and techno-economic optimization approaches have been discussed in detail. Shallow geothermal energy’s potential is first introduced, and the innovative borehole structures to improve performance and reduce installation cost is outlined. This is followed by an extensive survey of different types of conventional and thermally enhanced collectors and grouts. Attention is mainly given to the techno-economic analysis and optimization approaches. In published case studies, the least economic break-even point against fossil fuel-based heating systems occurs within 2.5 to 17 years, depending on the local geological conditions, installation efficiency, energy prices, and subsidy. Ground source heat pumps’ cost-effectiveness could be improved through market maturity, increased efficiency, cheap electricity, and good subsidy programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Krzysztof Seńczuk; Aneta Sapińska-Śliwa; Tomasz Kowalski;doi: 10.3390/en15197033
Research on the utilization of the Earth’s heat focuses mainly on effective sourcing of energy accumulated in rock mass. One of the most important parameters is thermal conductivity, which can be modified using various compositions of cement grouts. Hardened cement slurry is intended to improve thermal conductivity. It should function as a sort of extension of the rock mass to the outer diameter of heat exchanger tubes. Regardless of the thermal conductivity of the rock, high conductivity of the grout increases the energy efficiency of the BHE. Heat accumulated in the rock mass can be extracted using borehole heat exchangers (BHE), in which high thermal conductivity of cement slurry is wanted over the entire length of the exchanger. Generally, in case of deep borehole heat exchangers (DBHE), it is recommended to use two types of cement slurry, one with reduced thermal conductivity in the upper part of the exchanger and grout with increased thermal conductivity in its lower part. When cementing geothermal wells, cement grout with decreased thermal conductivity along the entire length of the borehole is most commonly used. Geothermal boreholes extract geothermal water which, at the surface, is used for heating, for example. Then, after use, the cooled water is injected through injection holes. In this article, two different basalt dusts are examined. These dusts were obtained by crushing basalt boulders in open-pit mines. They were examined for their effect on thermal conductivity when added to grout. According to the Polish Ordinance of the Minister of Environment dated 9 December 2014 regarding the waste catalogue, they were classified as waste. The materials, named basalt dust A and basalt dust B, were used to create cement slurries with a water–cement ratio of 0.5–0.7 with a wide range of percentage concentration of basalt dust. The test results show that as concentrations in the slurry increase, the values of thermal conductivity and strength decrease. This correlation occurred for both tested additives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Anna Sojczyńska; Aneta Sapińska-Śliwa; Tomasz Kowalski; Andrzej Gonet; Tomasz Sliwa;doi: 10.3390/en14113251
Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Aneta Sapińska-Śliwa; Andrzej Gonet; Marek Jaszczur; Inga Polepszyc;The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-017-0913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-017-0913-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tomasz Sliwa; Aneta Sapińska-Śliwa; Michał Korzec; Andrzej Gonet; Marek Jaszczur; Martyna Ciepielowska; Artur Gajdosz;doi: 10.3390/en14102734
The rotary-percussion drilling method is a prospective way to decrease drilling costs. It is obvious, based on literature analyses and finished geothermal drilling, that the Lublin Basin can be perceived as the one where rotary-percussion drilling can be used to drill an overburden of shale rocks. The paper explained the geology of the Lublin Basin, its’ geological structures, and the possibility of the use of drilling with a down-the-hole hammer, which could significantly decrease the cost of the whole shale gas drilling investment. Data collected from the wells drilled in the Lublin Basin were compared and analyzed to determine the viability of rotary-percussion drilling. Provided analyses showed that using the rotary-percussion drilling method in the Lublin Basin had a greater possibility of application than in other Polish shale basins (Baltic and Podlasie).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tomasz Sliwa; Patryk Leśniak; Aneta Sapińska-Śliwa; Marc A. Rosen;doi: 10.3390/en15031152
Investigating the constructions of borehole heat exchangers with high efficiency (unit heat transfer between the heat carrier and ground) is important. One of the means to improve efficiency is the use of the most efficient construction of the borehole heat exchanger. The paper describes research on borehole heat exchangers’ thermal efficiency, which is mainly characterized by parameters obtained from a thermal response test: effective thermal conductivity and borehole thermal resistivity. The borehole heat exchangers of the Laboratory of Geoenergetics in Poland were studied. Based on thermal response test interpretation and empirical equations, one of which is proprietary, the heat transfer is calculated independent of the duration of the thermal response test. Other conditions for using borehole heat exchangers in downtowns are discussed. The research aims to determine the best borehole heat exchanger design from five basic possibilities studied. A lack of unequivocal statements regarding this matter in the literature was observed. The influence of the interpretation method on the research results is determined. A single U-tube system filled with gravel is shown to be the most advantageous design by a very small margin. The applied interpretation methods, however, confirm the hitherto ambiguity in the selection of the best construction. The maximum heat carrier temperature at the end of thermal response tests was 32 °C for a geological profile mostly made up of clay (low thermal conductivity) and 23 °C for Carpathian flysch (sandstones and shales, with a higher value of conductivity).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu