- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Germany, Italy, Germany, Italy, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | GEMexEC| GEMexCornejo-Trivino N.; Liotta D.; Piccardi L.; Brogi A.; Kruszewski M.; Perez-Flores M. A.; Carrillo J.; Calcagno P.; Sass I.; Schill E.;AbstractThe influence of deep and regional geological structures is becoming increasingly important in superhot geothermal systems due to their proximity to the transition between brittleness and ductility. In the Los Humeros geothermal field in Mexico, where subsurface fluids reach temperatures of over 350 °C, the surface structures resulting from the collapse of calderas have so far only been interpreted at the local scale. The aim of this work is to place the recent tectonic and volcano-tectonic geomorphologic evolution and structures in the Los Humeros volcanic area in a regional context. NE- and NW-striking dominant structures resulting from a morpho-structural analysis on a regional scale are confirmed by negative and positive anomalies, respectively, after Butterworth filtering of gravity field data with different wavelengths over a local area of about 1000 km2. By analyzing the slip and dilation trends of the observed directions, we show the relevance of the regional context for reservoir exploration. The magnitudes of the principal stresses we estimate indicate a trans-tensional fault regime, a combination of strike-slip and normal faulting. The structures derived from the gravity and morpho-structural analyses, which are parallel to the maximum horizontal stress, have the highest potential for tensile and shear failure. Therefore, the corresponding negative gravity anomalies could be related to fracture porosity. Consequently, we hypothesize that these structures near the transition between brittleness and ductility control fluid flow in the Los Humeros geothermal field.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Italy, Germany, Italy, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | GEMexEC| GEMexCornejo-Trivino N.; Liotta D.; Piccardi L.; Brogi A.; Kruszewski M.; Perez-Flores M. A.; Carrillo J.; Calcagno P.; Sass I.; Schill E.;AbstractThe influence of deep and regional geological structures is becoming increasingly important in superhot geothermal systems due to their proximity to the transition between brittleness and ductility. In the Los Humeros geothermal field in Mexico, where subsurface fluids reach temperatures of over 350 °C, the surface structures resulting from the collapse of calderas have so far only been interpreted at the local scale. The aim of this work is to place the recent tectonic and volcano-tectonic geomorphologic evolution and structures in the Los Humeros volcanic area in a regional context. NE- and NW-striking dominant structures resulting from a morpho-structural analysis on a regional scale are confirmed by negative and positive anomalies, respectively, after Butterworth filtering of gravity field data with different wavelengths over a local area of about 1000 km2. By analyzing the slip and dilation trends of the observed directions, we show the relevance of the regional context for reservoir exploration. The magnitudes of the principal stresses we estimate indicate a trans-tensional fault regime, a combination of strike-slip and normal faulting. The structures derived from the gravity and morpho-structural analyses, which are parallel to the maximum horizontal stress, have the highest potential for tensile and shear failure. Therefore, the corresponding negative gravity anomalies could be related to fracture porosity. Consequently, we hypothesize that these structures near the transition between brittleness and ductility control fluid flow in the Los Humeros geothermal field.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Claire Bossennec; Lukas Seib; Matthis Frey; Jeroen van der Vaart; Ingo Sass;Fracture network is a crucial element to address in any model of the thermo-hydro-mechanical behaviour of a reservoir rock. This study aims to provide quantified datasets and a further understanding of the critical parameters of the fracture network pattern in crystalline rocks. In the Northern Upper Rhine Graben, such rock units are targeted for multiple energy applications, from deep geothermal heat extraction to heat storage. Eleven outcrops were investigated with a combined LiDAR and 2D profiles analysis to extract faults and fracture network geometrical parameters, including length distribution, orientation, connectivity, and topology. These properties are used to decipher the structural architecture and estimate the flow properties of crystalline units. Fracture networks show a multi-scale power-law behaviour for length distribution. Fracture topology and orientation are mainly driven by both fault networks and lithology. Fracture apertures and permeability tensors were then calculated for two application case studies, including the stress field effect on aperture. Obtained permeabilities are in the range of those observed in the sub-surface in currently exploited reservoirs. The dataset provided in this study is thus suitable to be implemented in the modelling during the exploration stage of industrial applications involving fractured crystalline reservoirs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Claire Bossennec; Lukas Seib; Matthis Frey; Jeroen van der Vaart; Ingo Sass;Fracture network is a crucial element to address in any model of the thermo-hydro-mechanical behaviour of a reservoir rock. This study aims to provide quantified datasets and a further understanding of the critical parameters of the fracture network pattern in crystalline rocks. In the Northern Upper Rhine Graben, such rock units are targeted for multiple energy applications, from deep geothermal heat extraction to heat storage. Eleven outcrops were investigated with a combined LiDAR and 2D profiles analysis to extract faults and fracture network geometrical parameters, including length distribution, orientation, connectivity, and topology. These properties are used to decipher the structural architecture and estimate the flow properties of crystalline units. Fracture networks show a multi-scale power-law behaviour for length distribution. Fracture topology and orientation are mainly driven by both fault networks and lithology. Fracture apertures and permeability tensors were then calculated for two application case studies, including the stress field effect on aperture. Obtained permeabilities are in the range of those observed in the sub-surface in currently exploited reservoirs. The dataset provided in this study is thus suitable to be implemented in the modelling during the exploration stage of industrial applications involving fractured crystalline reservoirs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors: Hemmatabady, H.; Welsch, B.; Formhals, J.; Sass, I.;Borehole heat exchanger (BHE) arrays represent a key technology for the future provision of sustainable building heating and cooling energy. They are either used as pure geothermal systems only extracting heating energy from the subsurface or they are also used to store excess heat from solar thermal collectors or waste heat from cooling applications in summer. The diversity of the systems makes it difficult to identify the optimal system in terms of emission reduction and economic efficiency. In this study, we assess the most relevant BHE system layouts for heating-only as well as combined heating and cooling purposes using dynamic simulations of the overall heating system in combination with an enviro-economic analysis method. The assessment routine is used in a multi-objective optimization approach to minimize the different system layouts' emission factor (EF) and their levelized cost of energy (LCOE). In order to cope with the high computational cost of the required long-term considerations, an artificial neural network (ANN) has been used to generate a proxy model in an intermediate step of the multi-objective optimization procedure. This approach delivers reliable optimization results, which reveal, that the lowest emissions for heating and cooling systems are realized by solar-assisted layouts. Comparison with a fossil-based reference layout shows that the most economical BHE layout accomplishes a 60% reduction in the EF with a moderate increase in the LCOE of only 13%. If, however, emission penalty costs are taken into account, the evaluated layouts also become economically advantageous compared to fossil-based systems.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors: Hemmatabady, H.; Welsch, B.; Formhals, J.; Sass, I.;Borehole heat exchanger (BHE) arrays represent a key technology for the future provision of sustainable building heating and cooling energy. They are either used as pure geothermal systems only extracting heating energy from the subsurface or they are also used to store excess heat from solar thermal collectors or waste heat from cooling applications in summer. The diversity of the systems makes it difficult to identify the optimal system in terms of emission reduction and economic efficiency. In this study, we assess the most relevant BHE system layouts for heating-only as well as combined heating and cooling purposes using dynamic simulations of the overall heating system in combination with an enviro-economic analysis method. The assessment routine is used in a multi-objective optimization approach to minimize the different system layouts' emission factor (EF) and their levelized cost of energy (LCOE). In order to cope with the high computational cost of the required long-term considerations, an artificial neural network (ANN) has been used to generate a proxy model in an intermediate step of the multi-objective optimization procedure. This approach delivers reliable optimization results, which reveal, that the lowest emissions for heating and cooling systems are realized by solar-assisted layouts. Comparison with a fossil-based reference layout shows that the most economical BHE layout accomplishes a 60% reduction in the EF with a moderate increase in the LCOE of only 13%. If, however, emission penalty costs are taken into account, the evaluated layouts also become economically advantageous compared to fossil-based systems.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Ramin Mahyapour; Sri Kalyan Tangirala; Kristian Bär; Ingo Sass;doi: 10.3390/en15249285
Porosity and permeability alteration due to the thermo-poro-elastic stress field disturbance from the cold fluid injection is a deciding factor for longer, more economic, and safer heat extraction from an enhanced geothermal system (EGS). In the Soultz-sous-Forêts geothermal system, faulted zones are the main flow paths, and the resulting porosity–permeability development over time due to stress reorientation is more sensitive in comparison with the regions without faulted zones. Available operational and field data are combined through a validated numerical simulation model to examine the mechanical impact on the pressure and temperature evolution. Results shows that near the injection wellbore zones, permeability and porosity values are strongly affected by stress field changes, and that permeability changes will affect the overall temperature and pressure of the system, demonstrating a fully coupled phenomenon. In some regions inside the faulted zones and close to injection wellbores, porosity doubles, whereas permeability may be enhanced up to 30 times. A sensitivity analysis is performed using two parameters which are not well discussed in the literature the for mechanical aspect, but the results in this study show that one of them impacts significantly on the porosity–permeability changes. Further experimental and field works on this parameter will help to model the heat extraction more precisely than before.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Ramin Mahyapour; Sri Kalyan Tangirala; Kristian Bär; Ingo Sass;doi: 10.3390/en15249285
Porosity and permeability alteration due to the thermo-poro-elastic stress field disturbance from the cold fluid injection is a deciding factor for longer, more economic, and safer heat extraction from an enhanced geothermal system (EGS). In the Soultz-sous-Forêts geothermal system, faulted zones are the main flow paths, and the resulting porosity–permeability development over time due to stress reorientation is more sensitive in comparison with the regions without faulted zones. Available operational and field data are combined through a validated numerical simulation model to examine the mechanical impact on the pressure and temperature evolution. Results shows that near the injection wellbore zones, permeability and porosity values are strongly affected by stress field changes, and that permeability changes will affect the overall temperature and pressure of the system, demonstrating a fully coupled phenomenon. In some regions inside the faulted zones and close to injection wellbores, porosity doubles, whereas permeability may be enhanced up to 30 times. A sensitivity analysis is performed using two parameters which are not well discussed in the literature the for mechanical aspect, but the results in this study show that one of them impacts significantly on the porosity–permeability changes. Further experimental and field works on this parameter will help to model the heat extraction more precisely than before.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC L. Müller; J.-H. Kupfernagel; J.-H. Kupfernagel; Jan Christopher Hesse; H. Anbergen; Ingo Sass; Bastian Welsch; M. Schedel;AbstractA large share of the primary energy is consumed to provide space heating. Geothermal energy offers a regenerative alternative. For reasons of efficiency and environmental protection, it is important to ensure the system integrity of a borehole heat exchanger (BHE). Previous investigations have focused on the individual components of the BHE or on the grout and pipe systems’ integrity. This study focused on the analysis of the hydraulic system integrity of the complete subsoil–grout–pipe system as well as possible thermally induced changes. For this purpose, a pilot-scale experiment was built to test a 1-m section of a typical BHE under in situ pressure, hydraulic and temperature conditions. During the tests the hydraulic system permeability of the soil and the BHE was measured continuously and separately from each other. In addition, the temperature monitoring array was installed in a 50-cm cross-sectional area. Significant temperature-related fluctuations in the sealing performance could be observed. Hydraulic conductivity limits required by VDI 4640-2 (Thermal use of the underground—ground source heat pump systems, 2019) were exceeded without frost action. The succeeding application of freeze–thaw cycles further enhances the system permeability. The study shows that the thermally induced effects on the system integrity of the BHE are larger and more significant than the subsequent frost-induced effects. The hydrophobic character of the high-density polyethylene (PE-HD) pipes as well as its high coefficient of thermal expansion seem to be the main points of weakness in the system. Optimization research should focus on the interface connection between grout and pipe, whereby hydrophilic pipe materials such as stainless steel or aluminum should also be considered as well as manipulation of the pipe surface properties of PE-HD.
Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC L. Müller; J.-H. Kupfernagel; J.-H. Kupfernagel; Jan Christopher Hesse; H. Anbergen; Ingo Sass; Bastian Welsch; M. Schedel;AbstractA large share of the primary energy is consumed to provide space heating. Geothermal energy offers a regenerative alternative. For reasons of efficiency and environmental protection, it is important to ensure the system integrity of a borehole heat exchanger (BHE). Previous investigations have focused on the individual components of the BHE or on the grout and pipe systems’ integrity. This study focused on the analysis of the hydraulic system integrity of the complete subsoil–grout–pipe system as well as possible thermally induced changes. For this purpose, a pilot-scale experiment was built to test a 1-m section of a typical BHE under in situ pressure, hydraulic and temperature conditions. During the tests the hydraulic system permeability of the soil and the BHE was measured continuously and separately from each other. In addition, the temperature monitoring array was installed in a 50-cm cross-sectional area. Significant temperature-related fluctuations in the sealing performance could be observed. Hydraulic conductivity limits required by VDI 4640-2 (Thermal use of the underground—ground source heat pump systems, 2019) were exceeded without frost action. The succeeding application of freeze–thaw cycles further enhances the system permeability. The study shows that the thermally induced effects on the system integrity of the BHE are larger and more significant than the subsequent frost-induced effects. The hydrophobic character of the high-density polyethylene (PE-HD) pipes as well as its high coefficient of thermal expansion seem to be the main points of weakness in the system. Optimization research should focus on the interface connection between grout and pipe, whereby hydrophilic pipe materials such as stainless steel or aluminum should also be considered as well as manipulation of the pipe surface properties of PE-HD.
Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, Italy, Italy, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:EC | GEMexEC| GEMexL. M. Weydt; Á. A. Ramírez-Guzmán; A. Pola; B. Lepillier; J. Kummerow; G. Mandrone; C. Comina; P. Deb; G. Norini; E. Gonzalez-Partida; D. R. Avellán; J. L. Macías; K. Bär; I. Sass; I. Sass;Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon are often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to a high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed fossil systems in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, Poisson’s ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al. 2020, http://dx.doi.org/10.25534/tudatalib-201.2), comprising 34 parameters determined on more than 2,160 plugs. More than 31,000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.
IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, Italy, Italy, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:EC | GEMexEC| GEMexL. M. Weydt; Á. A. Ramírez-Guzmán; A. Pola; B. Lepillier; J. Kummerow; G. Mandrone; C. Comina; P. Deb; G. Norini; E. Gonzalez-Partida; D. R. Avellán; J. L. Macías; K. Bär; I. Sass; I. Sass;Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon are often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to a high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed fossil systems in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, Poisson’s ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al. 2020, http://dx.doi.org/10.25534/tudatalib-201.2), comprising 34 parameters determined on more than 2,160 plugs. More than 31,000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.
IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bastian Welsch; Kristian Bär; Wolfram Rühaak; Ingo Sass; S. Homuth; Daniel O. Schulte;AbstractHeating of buildings requires more than 25% of the total end energy consumption in Germany. By storing excess heat from solar panels or thermal power stations of more than 110°C in summer, a medium deep borehole thermal energy storage (MD-BTES) can be operated on temperature levels above 45°C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use. Groundwater flow is decreasing with depth, making conduction the dominant heat transport process. Feasibility and design criteria of a coupled geothermal-solarthermal case study in crystalline bedrock for an office building are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bastian Welsch; Kristian Bär; Wolfram Rühaak; Ingo Sass; S. Homuth; Daniel O. Schulte;AbstractHeating of buildings requires more than 25% of the total end energy consumption in Germany. By storing excess heat from solar panels or thermal power stations of more than 110°C in summer, a medium deep borehole thermal energy storage (MD-BTES) can be operated on temperature levels above 45°C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use. Groundwater flow is decreasing with depth, making conduction the dominant heat transport process. Feasibility and design criteria of a coupled geothermal-solarthermal case study in crystalline bedrock for an office building are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:DFGDFGDaniel O. Schulte; Bastian Welsch; Anke Boockmeyer; Wolfram Rühaak; Ingo Sass; Sebastian Bauer; Kristian Bär;In the heating sector, borehole heat exchangers have become popular for supplying renewable energy. They tap into the subsurface to extract geothermal energy for heating purposes. For advanced applications, borehole heat exchangers require insulation in the upper part of the borehole either to meet legal requirements or to improve their performance. A priori numerical heat transport models of the subsurface are imperative for the systems’ planning and design. Only fully discretized models can account for depth-dependent borehole properties like insulated sections, but the model setup is cumbersome and the simulations come at high computational cost. Hence, these models are often not suitable for the simulation of larger installations. This study presents an analytical solution for the simulation of the thermal interactions of partly insulated borehole heat exchangers. A benchmark with a fully discretized OpenGeoSys model confirms sufficient accuracy of the analytical solution. In an application example, the functionality of the tool is demonstrated by finding the ideal length of a borehole insulation using mathematical optimization and by quantifying the effect of the insulation on the borehole heat exchanger performance. The presented method allows for accommodation of future advancements in borehole heat exchangers in numerical simulations at comparatively low computational cost.
Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:DFGDFGDaniel O. Schulte; Bastian Welsch; Anke Boockmeyer; Wolfram Rühaak; Ingo Sass; Sebastian Bauer; Kristian Bär;In the heating sector, borehole heat exchangers have become popular for supplying renewable energy. They tap into the subsurface to extract geothermal energy for heating purposes. For advanced applications, borehole heat exchangers require insulation in the upper part of the borehole either to meet legal requirements or to improve their performance. A priori numerical heat transport models of the subsurface are imperative for the systems’ planning and design. Only fully discretized models can account for depth-dependent borehole properties like insulated sections, but the model setup is cumbersome and the simulations come at high computational cost. Hence, these models are often not suitable for the simulation of larger installations. This study presents an analytical solution for the simulation of the thermal interactions of partly insulated borehole heat exchangers. A benchmark with a fully discretized OpenGeoSys model confirms sufficient accuracy of the analytical solution. In an application example, the functionality of the tool is demonstrated by finding the ideal length of a borehole insulation using mathematical optimization and by quantifying the effect of the insulation on the borehole heat exchanger performance. The presented method allows for accommodation of future advancements in borehole heat exchangers in numerical simulations at comparatively low computational cost.
Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Nora Koltzer; Magdalena Scheck-Wenderoth; Judith Bott; Mauro Cacace; Maximilian Frick; Ingo Sass; Johann-Gerhard Fritsche; Kristian Bär;A successful utilization of deep geothermal resources requires accurate predictions about the distribution of reservoir temperature as well as of the hydraulic processes exerting a direct influence on the productivity of geothermal reservoirs. The aim of this study was to investigate and quantify the influence that regional thermo-hydraulic processes have on the geothermal configuration of potential reservoirs in the German Federal State of Hesse. Specifically, we have addressed the question of how the regional thermal and hydraulic configuration influence the local hydro-thermal reservoir conditions. Therefore, a 3D structural model of Hesse was used as a basis for purely hydraulic, purely thermal and coupled 3D thermo-hydraulic simulations of the deep fluid flow and heat transport. As a result of our numerical simulations, Hesse can be differentiated into sub-areas differing in terms of the dominating heat transport process. In a final attempt to quantify the robustness and reliability of the modelling results, the modelling outcomes were analyzed by comparing them to available subsurface temperature, hydraulic and hydrochemical data.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Nora Koltzer; Magdalena Scheck-Wenderoth; Judith Bott; Mauro Cacace; Maximilian Frick; Ingo Sass; Johann-Gerhard Fritsche; Kristian Bär;A successful utilization of deep geothermal resources requires accurate predictions about the distribution of reservoir temperature as well as of the hydraulic processes exerting a direct influence on the productivity of geothermal reservoirs. The aim of this study was to investigate and quantify the influence that regional thermo-hydraulic processes have on the geothermal configuration of potential reservoirs in the German Federal State of Hesse. Specifically, we have addressed the question of how the regional thermal and hydraulic configuration influence the local hydro-thermal reservoir conditions. Therefore, a 3D structural model of Hesse was used as a basis for purely hydraulic, purely thermal and coupled 3D thermo-hydraulic simulations of the deep fluid flow and heat transport. As a result of our numerical simulations, Hesse can be differentiated into sub-areas differing in terms of the dominating heat transport process. In a final attempt to quantify the robustness and reliability of the modelling results, the modelling outcomes were analyzed by comparing them to available subsurface temperature, hydraulic and hydrochemical data.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:MDPI AG Funded by:DFG | Darmstadt Graduate School...DFG| Darmstadt Graduate School of Energy Science and EngineeringJulian Formhals; Hoofar Hemmatabady; Bastian Welsch; Daniel Schulte; Ingo Sass;Borehole thermal energy storage (BTES) systems facilitate the subsurface seasonal storage of thermal energy on district heating scales. These systems’ performances are strongly dependent on operational conditions like temperature levels or hydraulic circuitry. Preliminary numerical system simulations improve comprehension of the storage performance and its interdependencies with other system components, but require both accurate and computationally efficient models. This study presents a toolbox for the simulation of borehole thermal energy storage systems in Modelica. The storage model is divided into a borehole heat exchanger (BHE), a local, and a global sub-model. For each sub-model, different modeling approaches can be deployed. To assess the overall performance of the model, two studies are carried out: One compares the model results to those of 3D finite element method (FEM) models to investigate the model’s validity over a large range of parameters. In a second study, the accuracies of the implemented model variants are assessed by comparing their results to monitoring data from an existing BTES system. Both studies prove the validity of the modeling approaches under investigation. Although the differences in accuracy for the compared variants are small, the proper model choice can significantly reduce the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:MDPI AG Funded by:DFG | Darmstadt Graduate School...DFG| Darmstadt Graduate School of Energy Science and EngineeringJulian Formhals; Hoofar Hemmatabady; Bastian Welsch; Daniel Schulte; Ingo Sass;Borehole thermal energy storage (BTES) systems facilitate the subsurface seasonal storage of thermal energy on district heating scales. These systems’ performances are strongly dependent on operational conditions like temperature levels or hydraulic circuitry. Preliminary numerical system simulations improve comprehension of the storage performance and its interdependencies with other system components, but require both accurate and computationally efficient models. This study presents a toolbox for the simulation of borehole thermal energy storage systems in Modelica. The storage model is divided into a borehole heat exchanger (BHE), a local, and a global sub-model. For each sub-model, different modeling approaches can be deployed. To assess the overall performance of the model, two studies are carried out: One compares the model results to those of 3D finite element method (FEM) models to investigate the model’s validity over a large range of parameters. In a second study, the accuracies of the implemented model variants are assessed by comparing their results to monitoring data from an existing BTES system. Both studies prove the validity of the modeling approaches under investigation. Although the differences in accuracy for the compared variants are small, the proper model choice can significantly reduce the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Germany, Italy, Germany, Italy, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | GEMexEC| GEMexCornejo-Trivino N.; Liotta D.; Piccardi L.; Brogi A.; Kruszewski M.; Perez-Flores M. A.; Carrillo J.; Calcagno P.; Sass I.; Schill E.;AbstractThe influence of deep and regional geological structures is becoming increasingly important in superhot geothermal systems due to their proximity to the transition between brittleness and ductility. In the Los Humeros geothermal field in Mexico, where subsurface fluids reach temperatures of over 350 °C, the surface structures resulting from the collapse of calderas have so far only been interpreted at the local scale. The aim of this work is to place the recent tectonic and volcano-tectonic geomorphologic evolution and structures in the Los Humeros volcanic area in a regional context. NE- and NW-striking dominant structures resulting from a morpho-structural analysis on a regional scale are confirmed by negative and positive anomalies, respectively, after Butterworth filtering of gravity field data with different wavelengths over a local area of about 1000 km2. By analyzing the slip and dilation trends of the observed directions, we show the relevance of the regional context for reservoir exploration. The magnitudes of the principal stresses we estimate indicate a trans-tensional fault regime, a combination of strike-slip and normal faulting. The structures derived from the gravity and morpho-structural analyses, which are parallel to the maximum horizontal stress, have the highest potential for tensile and shear failure. Therefore, the corresponding negative gravity anomalies could be related to fracture porosity. Consequently, we hypothesize that these structures near the transition between brittleness and ductility control fluid flow in the Los Humeros geothermal field.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Italy, Germany, Italy, United States, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | GEMexEC| GEMexCornejo-Trivino N.; Liotta D.; Piccardi L.; Brogi A.; Kruszewski M.; Perez-Flores M. A.; Carrillo J.; Calcagno P.; Sass I.; Schill E.;AbstractThe influence of deep and regional geological structures is becoming increasingly important in superhot geothermal systems due to their proximity to the transition between brittleness and ductility. In the Los Humeros geothermal field in Mexico, where subsurface fluids reach temperatures of over 350 °C, the surface structures resulting from the collapse of calderas have so far only been interpreted at the local scale. The aim of this work is to place the recent tectonic and volcano-tectonic geomorphologic evolution and structures in the Los Humeros volcanic area in a regional context. NE- and NW-striking dominant structures resulting from a morpho-structural analysis on a regional scale are confirmed by negative and positive anomalies, respectively, after Butterworth filtering of gravity field data with different wavelengths over a local area of about 1000 km2. By analyzing the slip and dilation trends of the observed directions, we show the relevance of the regional context for reservoir exploration. The magnitudes of the principal stresses we estimate indicate a trans-tensional fault regime, a combination of strike-slip and normal faulting. The structures derived from the gravity and morpho-structural analyses, which are parallel to the maximum horizontal stress, have the highest potential for tensile and shear failure. Therefore, the corresponding negative gravity anomalies could be related to fracture porosity. Consequently, we hypothesize that these structures near the transition between brittleness and ductility control fluid flow in the Los Humeros geothermal field.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00285-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Claire Bossennec; Lukas Seib; Matthis Frey; Jeroen van der Vaart; Ingo Sass;Fracture network is a crucial element to address in any model of the thermo-hydro-mechanical behaviour of a reservoir rock. This study aims to provide quantified datasets and a further understanding of the critical parameters of the fracture network pattern in crystalline rocks. In the Northern Upper Rhine Graben, such rock units are targeted for multiple energy applications, from deep geothermal heat extraction to heat storage. Eleven outcrops were investigated with a combined LiDAR and 2D profiles analysis to extract faults and fracture network geometrical parameters, including length distribution, orientation, connectivity, and topology. These properties are used to decipher the structural architecture and estimate the flow properties of crystalline units. Fracture networks show a multi-scale power-law behaviour for length distribution. Fracture topology and orientation are mainly driven by both fault networks and lithology. Fracture apertures and permeability tensors were then calculated for two application case studies, including the stress field effect on aperture. Obtained permeabilities are in the range of those observed in the sub-surface in currently exploited reservoirs. The dataset provided in this study is thus suitable to be implemented in the modelling during the exploration stage of industrial applications involving fractured crystalline reservoirs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Claire Bossennec; Lukas Seib; Matthis Frey; Jeroen van der Vaart; Ingo Sass;Fracture network is a crucial element to address in any model of the thermo-hydro-mechanical behaviour of a reservoir rock. This study aims to provide quantified datasets and a further understanding of the critical parameters of the fracture network pattern in crystalline rocks. In the Northern Upper Rhine Graben, such rock units are targeted for multiple energy applications, from deep geothermal heat extraction to heat storage. Eleven outcrops were investigated with a combined LiDAR and 2D profiles analysis to extract faults and fracture network geometrical parameters, including length distribution, orientation, connectivity, and topology. These properties are used to decipher the structural architecture and estimate the flow properties of crystalline units. Fracture networks show a multi-scale power-law behaviour for length distribution. Fracture topology and orientation are mainly driven by both fault networks and lithology. Fracture apertures and permeability tensors were then calculated for two application case studies, including the stress field effect on aperture. Obtained permeabilities are in the range of those observed in the sub-surface in currently exploited reservoirs. The dataset provided in this study is thus suitable to be implemented in the modelling during the exploration stage of industrial applications involving fractured crystalline reservoirs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1310/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors: Hemmatabady, H.; Welsch, B.; Formhals, J.; Sass, I.;Borehole heat exchanger (BHE) arrays represent a key technology for the future provision of sustainable building heating and cooling energy. They are either used as pure geothermal systems only extracting heating energy from the subsurface or they are also used to store excess heat from solar thermal collectors or waste heat from cooling applications in summer. The diversity of the systems makes it difficult to identify the optimal system in terms of emission reduction and economic efficiency. In this study, we assess the most relevant BHE system layouts for heating-only as well as combined heating and cooling purposes using dynamic simulations of the overall heating system in combination with an enviro-economic analysis method. The assessment routine is used in a multi-objective optimization approach to minimize the different system layouts' emission factor (EF) and their levelized cost of energy (LCOE). In order to cope with the high computational cost of the required long-term considerations, an artificial neural network (ANN) has been used to generate a proxy model in an intermediate step of the multi-objective optimization procedure. This approach delivers reliable optimization results, which reveal, that the lowest emissions for heating and cooling systems are realized by solar-assisted layouts. Comparison with a fossil-based reference layout shows that the most economical BHE layout accomplishes a 60% reduction in the EF with a moderate increase in the LCOE of only 13%. If, however, emission penalty costs are taken into account, the evaluated layouts also become economically advantageous compared to fossil-based systems.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors: Hemmatabady, H.; Welsch, B.; Formhals, J.; Sass, I.;Borehole heat exchanger (BHE) arrays represent a key technology for the future provision of sustainable building heating and cooling energy. They are either used as pure geothermal systems only extracting heating energy from the subsurface or they are also used to store excess heat from solar thermal collectors or waste heat from cooling applications in summer. The diversity of the systems makes it difficult to identify the optimal system in terms of emission reduction and economic efficiency. In this study, we assess the most relevant BHE system layouts for heating-only as well as combined heating and cooling purposes using dynamic simulations of the overall heating system in combination with an enviro-economic analysis method. The assessment routine is used in a multi-objective optimization approach to minimize the different system layouts' emission factor (EF) and their levelized cost of energy (LCOE). In order to cope with the high computational cost of the required long-term considerations, an artificial neural network (ANN) has been used to generate a proxy model in an intermediate step of the multi-objective optimization procedure. This approach delivers reliable optimization results, which reveal, that the lowest emissions for heating and cooling systems are realized by solar-assisted layouts. Comparison with a fossil-based reference layout shows that the most economical BHE layout accomplishes a 60% reduction in the EF with a moderate increase in the LCOE of only 13%. If, however, emission penalty costs are taken into account, the evaluated layouts also become economically advantageous compared to fossil-based systems.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Ramin Mahyapour; Sri Kalyan Tangirala; Kristian Bär; Ingo Sass;doi: 10.3390/en15249285
Porosity and permeability alteration due to the thermo-poro-elastic stress field disturbance from the cold fluid injection is a deciding factor for longer, more economic, and safer heat extraction from an enhanced geothermal system (EGS). In the Soultz-sous-Forêts geothermal system, faulted zones are the main flow paths, and the resulting porosity–permeability development over time due to stress reorientation is more sensitive in comparison with the regions without faulted zones. Available operational and field data are combined through a validated numerical simulation model to examine the mechanical impact on the pressure and temperature evolution. Results shows that near the injection wellbore zones, permeability and porosity values are strongly affected by stress field changes, and that permeability changes will affect the overall temperature and pressure of the system, demonstrating a fully coupled phenomenon. In some regions inside the faulted zones and close to injection wellbores, porosity doubles, whereas permeability may be enhanced up to 30 times. A sensitivity analysis is performed using two parameters which are not well discussed in the literature the for mechanical aspect, but the results in this study show that one of them impacts significantly on the porosity–permeability changes. Further experimental and field works on this parameter will help to model the heat extraction more precisely than before.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Ramin Mahyapour; Sri Kalyan Tangirala; Kristian Bär; Ingo Sass;doi: 10.3390/en15249285
Porosity and permeability alteration due to the thermo-poro-elastic stress field disturbance from the cold fluid injection is a deciding factor for longer, more economic, and safer heat extraction from an enhanced geothermal system (EGS). In the Soultz-sous-Forêts geothermal system, faulted zones are the main flow paths, and the resulting porosity–permeability development over time due to stress reorientation is more sensitive in comparison with the regions without faulted zones. Available operational and field data are combined through a validated numerical simulation model to examine the mechanical impact on the pressure and temperature evolution. Results shows that near the injection wellbore zones, permeability and porosity values are strongly affected by stress field changes, and that permeability changes will affect the overall temperature and pressure of the system, demonstrating a fully coupled phenomenon. In some regions inside the faulted zones and close to injection wellbores, porosity doubles, whereas permeability may be enhanced up to 30 times. A sensitivity analysis is performed using two parameters which are not well discussed in the literature the for mechanical aspect, but the results in this study show that one of them impacts significantly on the porosity–permeability changes. Further experimental and field works on this parameter will help to model the heat extraction more precisely than before.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/24/9285/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC L. Müller; J.-H. Kupfernagel; J.-H. Kupfernagel; Jan Christopher Hesse; H. Anbergen; Ingo Sass; Bastian Welsch; M. Schedel;AbstractA large share of the primary energy is consumed to provide space heating. Geothermal energy offers a regenerative alternative. For reasons of efficiency and environmental protection, it is important to ensure the system integrity of a borehole heat exchanger (BHE). Previous investigations have focused on the individual components of the BHE or on the grout and pipe systems’ integrity. This study focused on the analysis of the hydraulic system integrity of the complete subsoil–grout–pipe system as well as possible thermally induced changes. For this purpose, a pilot-scale experiment was built to test a 1-m section of a typical BHE under in situ pressure, hydraulic and temperature conditions. During the tests the hydraulic system permeability of the soil and the BHE was measured continuously and separately from each other. In addition, the temperature monitoring array was installed in a 50-cm cross-sectional area. Significant temperature-related fluctuations in the sealing performance could be observed. Hydraulic conductivity limits required by VDI 4640-2 (Thermal use of the underground—ground source heat pump systems, 2019) were exceeded without frost action. The succeeding application of freeze–thaw cycles further enhances the system permeability. The study shows that the thermally induced effects on the system integrity of the BHE are larger and more significant than the subsequent frost-induced effects. The hydrophobic character of the high-density polyethylene (PE-HD) pipes as well as its high coefficient of thermal expansion seem to be the main points of weakness in the system. Optimization research should focus on the interface connection between grout and pipe, whereby hydrophilic pipe materials such as stainless steel or aluminum should also be considered as well as manipulation of the pipe surface properties of PE-HD.
Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC L. Müller; J.-H. Kupfernagel; J.-H. Kupfernagel; Jan Christopher Hesse; H. Anbergen; Ingo Sass; Bastian Welsch; M. Schedel;AbstractA large share of the primary energy is consumed to provide space heating. Geothermal energy offers a regenerative alternative. For reasons of efficiency and environmental protection, it is important to ensure the system integrity of a borehole heat exchanger (BHE). Previous investigations have focused on the individual components of the BHE or on the grout and pipe systems’ integrity. This study focused on the analysis of the hydraulic system integrity of the complete subsoil–grout–pipe system as well as possible thermally induced changes. For this purpose, a pilot-scale experiment was built to test a 1-m section of a typical BHE under in situ pressure, hydraulic and temperature conditions. During the tests the hydraulic system permeability of the soil and the BHE was measured continuously and separately from each other. In addition, the temperature monitoring array was installed in a 50-cm cross-sectional area. Significant temperature-related fluctuations in the sealing performance could be observed. Hydraulic conductivity limits required by VDI 4640-2 (Thermal use of the underground—ground source heat pump systems, 2019) were exceeded without frost action. The succeeding application of freeze–thaw cycles further enhances the system permeability. The study shows that the thermally induced effects on the system integrity of the BHE are larger and more significant than the subsequent frost-induced effects. The hydrophobic character of the high-density polyethylene (PE-HD) pipes as well as its high coefficient of thermal expansion seem to be the main points of weakness in the system. Optimization research should focus on the interface connection between grout and pipe, whereby hydrophilic pipe materials such as stainless steel or aluminum should also be considered as well as manipulation of the pipe surface properties of PE-HD.
Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geothermal Energy arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2021License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-021-00206-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, Italy, Italy, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:EC | GEMexEC| GEMexL. M. Weydt; Á. A. Ramírez-Guzmán; A. Pola; B. Lepillier; J. Kummerow; G. Mandrone; C. Comina; P. Deb; G. Norini; E. Gonzalez-Partida; D. R. Avellán; J. L. Macías; K. Bär; I. Sass; I. Sass;Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon are often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to a high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed fossil systems in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, Poisson’s ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al. 2020, http://dx.doi.org/10.25534/tudatalib-201.2), comprising 34 parameters determined on more than 2,160 plugs. More than 31,000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.
IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, Italy, Italy, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:EC | GEMexEC| GEMexL. M. Weydt; Á. A. Ramírez-Guzmán; A. Pola; B. Lepillier; J. Kummerow; G. Mandrone; C. Comina; P. Deb; G. Norini; E. Gonzalez-Partida; D. R. Avellán; J. L. Macías; K. Bär; I. Sass; I. Sass;Abstract. Petrophysical and mechanical rock properties are key parameters for the characterization of the deep subsurface in different disciplines such as geothermal heat extraction, petroleum reservoir engineering or mining. They are commonly used for the interpretation of geophysical data and the parameterization of numerical models and thus are the basis for economic reservoir assessment. However, detailed information regarding petrophysical and mechanical rock properties for each relevant target horizon are often scarce, inconsistent or distributed over multiple publications. Therefore, subsurface models are often populated with generalized or assumed values resulting in high uncertainties. Furthermore, diagenetic, metamorphic and hydrothermal processes significantly affect the physiochemical and mechanical properties often leading to a high geological variability. A sound understanding of the controlling factors is needed to identify statistical and causal relationships between the properties as a basis for a profound reservoir assessment and modeling. Within the scope of the GEMex project (EU-H2020, GA Nr. 727550), which aims to develop new transferable exploration and exploitation approaches for enhanced and super-hot unconventional geothermal systems, a new workflow was applied to overcome the gap of knowledge of the reservoir properties. Two caldera complexes located in the northeastern Trans-Mexican Volcanic Belt – the Acoculco and Los Humeros caldera – were selected as demonstration sites. The workflow starts with outcrop analogue and reservoir core sample studies in order to define and characterize the properties of all key units from the basement to the cap rock as well as their mineralogy and geochemistry. This allows the identification of geological heterogeneities on different scales (outcrop analysis, representative rock samples, thin sections and chemical analysis) enabling a profound reservoir property prediction. More than 300 rock samples were taken from representative outcrops inside of the Los Humeros and Acoculco calderas, the surrounding areas and from exhumed fossil systems in Las Minas and Zacatlán. Additionally, 66 core samples from 16 wells of the Los Humeros geothermal field and 8 core samples from well EAC1 of the Acoculco geothermal field were collected. Samples were analyzed for particle and bulk density, porosity, permeability, thermal conductivity, thermal diffusivity, heat capacity, as well as ultra-sonic wave velocities, magnetic susceptibility and electric resistivity. Afterwards, destructive rock mechanical tests (point load tests, uniaxial and triaxial tests) were conducted to determine tensile strength, uniaxial compressive strength, Young’s modulus, Poisson’s ratio, bulk modulus, shear modulus, fracture toughness, cohesion and friction angle. In addition, XRD and XRF analyses were performed on 137 samples to provide information about the mineral assemblage, bulk geochemistry and the intensity of hydrothermal alteration. An extensive rock property database was created (Weydt et al. 2020, http://dx.doi.org/10.25534/tudatalib-201.2), comprising 34 parameters determined on more than 2,160 plugs. More than 31,000 data entries were compiled covering volcanic, sedimentary, metamorphic and igneous rocks from different ages (Jurassic to Holocene), thus facilitating a wide field of applications regarding resource assessment, modeling and statistical analyses.
IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert IRIS Cnr arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bastian Welsch; Kristian Bär; Wolfram Rühaak; Ingo Sass; S. Homuth; Daniel O. Schulte;AbstractHeating of buildings requires more than 25% of the total end energy consumption in Germany. By storing excess heat from solar panels or thermal power stations of more than 110°C in summer, a medium deep borehole thermal energy storage (MD-BTES) can be operated on temperature levels above 45°C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use. Groundwater flow is decreasing with depth, making conduction the dominant heat transport process. Feasibility and design criteria of a coupled geothermal-solarthermal case study in crystalline bedrock for an office building are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bastian Welsch; Kristian Bär; Wolfram Rühaak; Ingo Sass; S. Homuth; Daniel O. Schulte;AbstractHeating of buildings requires more than 25% of the total end energy consumption in Germany. By storing excess heat from solar panels or thermal power stations of more than 110°C in summer, a medium deep borehole thermal energy storage (MD-BTES) can be operated on temperature levels above 45°C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use. Groundwater flow is decreasing with depth, making conduction the dominant heat transport process. Feasibility and design criteria of a coupled geothermal-solarthermal case study in crystalline bedrock for an office building are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:DFGDFGDaniel O. Schulte; Bastian Welsch; Anke Boockmeyer; Wolfram Rühaak; Ingo Sass; Sebastian Bauer; Kristian Bär;In the heating sector, borehole heat exchangers have become popular for supplying renewable energy. They tap into the subsurface to extract geothermal energy for heating purposes. For advanced applications, borehole heat exchangers require insulation in the upper part of the borehole either to meet legal requirements or to improve their performance. A priori numerical heat transport models of the subsurface are imperative for the systems’ planning and design. Only fully discretized models can account for depth-dependent borehole properties like insulated sections, but the model setup is cumbersome and the simulations come at high computational cost. Hence, these models are often not suitable for the simulation of larger installations. This study presents an analytical solution for the simulation of the thermal interactions of partly insulated borehole heat exchangers. A benchmark with a fully discretized OpenGeoSys model confirms sufficient accuracy of the analytical solution. In an application example, the functionality of the tool is demonstrated by finding the ideal length of a borehole insulation using mathematical optimization and by quantifying the effect of the insulation on the borehole heat exchanger performance. The presented method allows for accommodation of future advancements in borehole heat exchangers in numerical simulations at comparatively low computational cost.
Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:DFGDFGDaniel O. Schulte; Bastian Welsch; Anke Boockmeyer; Wolfram Rühaak; Ingo Sass; Sebastian Bauer; Kristian Bär;In the heating sector, borehole heat exchangers have become popular for supplying renewable energy. They tap into the subsurface to extract geothermal energy for heating purposes. For advanced applications, borehole heat exchangers require insulation in the upper part of the borehole either to meet legal requirements or to improve their performance. A priori numerical heat transport models of the subsurface are imperative for the systems’ planning and design. Only fully discretized models can account for depth-dependent borehole properties like insulated sections, but the model setup is cumbersome and the simulations come at high computational cost. Hence, these models are often not suitable for the simulation of larger installations. This study presents an analytical solution for the simulation of the thermal interactions of partly insulated borehole heat exchangers. A benchmark with a fully discretized OpenGeoSys model confirms sufficient accuracy of the analytical solution. In an application example, the functionality of the tool is demonstrated by finding the ideal length of a borehole insulation using mathematical optimization and by quantifying the effect of the insulation on the borehole heat exchanger performance. The presented method allows for accommodation of future advancements in borehole heat exchangers in numerical simulations at comparatively low computational cost.
Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Earth ... arrow_drop_down Environmental Earth SciencesArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12665-016-5638-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Nora Koltzer; Magdalena Scheck-Wenderoth; Judith Bott; Mauro Cacace; Maximilian Frick; Ingo Sass; Johann-Gerhard Fritsche; Kristian Bär;A successful utilization of deep geothermal resources requires accurate predictions about the distribution of reservoir temperature as well as of the hydraulic processes exerting a direct influence on the productivity of geothermal reservoirs. The aim of this study was to investigate and quantify the influence that regional thermo-hydraulic processes have on the geothermal configuration of potential reservoirs in the German Federal State of Hesse. Specifically, we have addressed the question of how the regional thermal and hydraulic configuration influence the local hydro-thermal reservoir conditions. Therefore, a 3D structural model of Hesse was used as a basis for purely hydraulic, purely thermal and coupled 3D thermo-hydraulic simulations of the deep fluid flow and heat transport. As a result of our numerical simulations, Hesse can be differentiated into sub-areas differing in terms of the dominating heat transport process. In a final attempt to quantify the robustness and reliability of the modelling results, the modelling outcomes were analyzed by comparing them to available subsurface temperature, hydraulic and hydrochemical data.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Nora Koltzer; Magdalena Scheck-Wenderoth; Judith Bott; Mauro Cacace; Maximilian Frick; Ingo Sass; Johann-Gerhard Fritsche; Kristian Bär;A successful utilization of deep geothermal resources requires accurate predictions about the distribution of reservoir temperature as well as of the hydraulic processes exerting a direct influence on the productivity of geothermal reservoirs. The aim of this study was to investigate and quantify the influence that regional thermo-hydraulic processes have on the geothermal configuration of potential reservoirs in the German Federal State of Hesse. Specifically, we have addressed the question of how the regional thermal and hydraulic configuration influence the local hydro-thermal reservoir conditions. Therefore, a 3D structural model of Hesse was used as a basis for purely hydraulic, purely thermal and coupled 3D thermo-hydraulic simulations of the deep fluid flow and heat transport. As a result of our numerical simulations, Hesse can be differentiated into sub-areas differing in terms of the dominating heat transport process. In a final attempt to quantify the robustness and reliability of the modelling results, the modelling outcomes were analyzed by comparing them to available subsurface temperature, hydraulic and hydrochemical data.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/11/2081/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:MDPI AG Funded by:DFG | Darmstadt Graduate School...DFG| Darmstadt Graduate School of Energy Science and EngineeringJulian Formhals; Hoofar Hemmatabady; Bastian Welsch; Daniel Schulte; Ingo Sass;Borehole thermal energy storage (BTES) systems facilitate the subsurface seasonal storage of thermal energy on district heating scales. These systems’ performances are strongly dependent on operational conditions like temperature levels or hydraulic circuitry. Preliminary numerical system simulations improve comprehension of the storage performance and its interdependencies with other system components, but require both accurate and computationally efficient models. This study presents a toolbox for the simulation of borehole thermal energy storage systems in Modelica. The storage model is divided into a borehole heat exchanger (BHE), a local, and a global sub-model. For each sub-model, different modeling approaches can be deployed. To assess the overall performance of the model, two studies are carried out: One compares the model results to those of 3D finite element method (FEM) models to investigate the model’s validity over a large range of parameters. In a second study, the accuracies of the implemented model variants are assessed by comparing their results to monitoring data from an existing BTES system. Both studies prove the validity of the modeling approaches under investigation. Although the differences in accuracy for the compared variants are small, the proper model choice can significantly reduce the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 GermanyPublisher:MDPI AG Funded by:DFG | Darmstadt Graduate School...DFG| Darmstadt Graduate School of Energy Science and EngineeringJulian Formhals; Hoofar Hemmatabady; Bastian Welsch; Daniel Schulte; Ingo Sass;Borehole thermal energy storage (BTES) systems facilitate the subsurface seasonal storage of thermal energy on district heating scales. These systems’ performances are strongly dependent on operational conditions like temperature levels or hydraulic circuitry. Preliminary numerical system simulations improve comprehension of the storage performance and its interdependencies with other system components, but require both accurate and computationally efficient models. This study presents a toolbox for the simulation of borehole thermal energy storage systems in Modelica. The storage model is divided into a borehole heat exchanger (BHE), a local, and a global sub-model. For each sub-model, different modeling approaches can be deployed. To assess the overall performance of the model, two studies are carried out: One compares the model results to those of 3D finite element method (FEM) models to investigate the model’s validity over a large range of parameters. In a second study, the accuracies of the implemented model variants are assessed by comparing their results to monitoring data from an existing BTES system. Both studies prove the validity of the modeling approaches under investigation. Although the differences in accuracy for the compared variants are small, the proper model choice can significantly reduce the computational effort.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2327/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu