- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Authors: Nanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; +3 AuthorsNanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; Kirsten Christoffersen; Kirsten Christoffersen; Ditte Marie Christiansen;Mosses often dominate the submerged vegetation in Arctic lakes and ponds, making them essential contributors to the primary production in these habitats. However, little is known about the factors controlling annual growth of Arctic mosses and their sensitivity to climatic changes. It has been suggested that nutrient translocation occurs in mosses, and that annual growth of mosses therefore depends strongly on weather conditions and less on local environmental conditions. In this study, we examined annual growth of Drepanocladus trifarius ((F. Weber and D. Mohr) Broth.) from two ponds in West Greenland in relation to weather conditions. A reconstruction of annual growth increments from 2009 to 2014 was made in 200 individual mosses, and biomass and length were related to different weather parameters. In addition, we examined whether there would be an indication of nutrient translocation across annual growth segments. We found a positive relationship between mean summer temperature and growth segment length, which indicates the importance of temperature during seasons with sufficient light levels for growth of the D. trifarius. Weather parameters associated with light conditions had no significant effect on growth, which probably reflect that D. trifarius in two shallow ponds were not light limited. The nutrient stoichiometry showed that phosphorus (P) contents in the tissue were low (0.04–0.11% DW), and nutrient resorption efficiencies of P amounted to 11–29%. This suggests that D. trifarius was P limited during its growth season, but appears capable of nutrient translocation across annual segments, possibly to maintain growth in oligotrophic environments. Despite low nitrogen (N) contents (0.94–2.09%), no resorption of N was found, which indicates that D. trifarius was not N-limited in order to sustain growth. In conclusion, this study shows that growth of D. trifarius in small high Arctic ponds are mainly controlled by summer temperatures.
Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Authors: Nanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; +3 AuthorsNanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; Kirsten Christoffersen; Kirsten Christoffersen; Ditte Marie Christiansen;Mosses often dominate the submerged vegetation in Arctic lakes and ponds, making them essential contributors to the primary production in these habitats. However, little is known about the factors controlling annual growth of Arctic mosses and their sensitivity to climatic changes. It has been suggested that nutrient translocation occurs in mosses, and that annual growth of mosses therefore depends strongly on weather conditions and less on local environmental conditions. In this study, we examined annual growth of Drepanocladus trifarius ((F. Weber and D. Mohr) Broth.) from two ponds in West Greenland in relation to weather conditions. A reconstruction of annual growth increments from 2009 to 2014 was made in 200 individual mosses, and biomass and length were related to different weather parameters. In addition, we examined whether there would be an indication of nutrient translocation across annual growth segments. We found a positive relationship between mean summer temperature and growth segment length, which indicates the importance of temperature during seasons with sufficient light levels for growth of the D. trifarius. Weather parameters associated with light conditions had no significant effect on growth, which probably reflect that D. trifarius in two shallow ponds were not light limited. The nutrient stoichiometry showed that phosphorus (P) contents in the tissue were low (0.04–0.11% DW), and nutrient resorption efficiencies of P amounted to 11–29%. This suggests that D. trifarius was P limited during its growth season, but appears capable of nutrient translocation across annual segments, possibly to maintain growth in oligotrophic environments. Despite low nitrogen (N) contents (0.94–2.09%), no resorption of N was found, which indicates that D. trifarius was not N-limited in order to sustain growth. In conclusion, this study shows that growth of D. trifarius in small high Arctic ponds are mainly controlled by summer temperatures.
Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Denmark, SpainPublisher:Wiley Ditte M. Christiansen; Gesa Römer; Johan P. Dahlgren; Malin Borg; Owen R. Jones; Sonia Merinero; Kristoffer Hylander; Johan Ehrlén;doi: 10.1002/ecy.4191
pmid: 37878669
AbstractClimate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small‐scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism‐relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Denmark, SpainPublisher:Wiley Ditte M. Christiansen; Gesa Römer; Johan P. Dahlgren; Malin Borg; Owen R. Jones; Sonia Merinero; Kristoffer Hylander; Johan Ehrlén;doi: 10.1002/ecy.4191
pmid: 37878669
AbstractClimate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small‐scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism‐relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024 United Kingdom, Italy, Spain, Denmark, United Kingdom, Norway, Austria, France, Finland, Belgium, United Kingdom, Belgium, Spain, Italy, United Kingdom, Austria, SpainPublisher:Wiley Funded by:SNSF | Climate change impacts on..., AKA | Investigating the geodive..., RCN | The role of Functional gr... +10 projectsSNSF| Climate change impacts on biodiversity: From macro- to microclimate ,AKA| Investigating the geodiversity-biodiversity relationship under climate change ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,ANR| SEEDFOR ,ANR| ASICS ,FWF| Land use, biological invasions and local species diversity ,SNSF| Quantifying potential species distribution shifts with climate change using field experiments and novel computational modeling approaches ,ANR| IMPRINT ,EC| THRESHOLD ,RCN| Indirect climate change impacts on alpine plant communities ,RCN| FUNDER - Direct and indirect climate impacts on the biodiversity and Functioning of the UNDERground ecosystem ,AKA| Atmosphere and Climate Competence Center (ACCC)Julia Kemppinen; Jonas J. Lembrechts; Koenraad Van Meerbeek; Jofre Carnicer; Nathalie Isabelle Chardon; Paul Kardol; Jonathan Lenoir; Daijun Liu; Ilya Maclean; Jan Pergl; Patrick Saccone; Rebecca A. Senior; Ting Shen; Sandra Słowińska; Vigdis Vandvik; Jonathan von Oppen; Juha Aalto; Biruk Ayalew; Olivia Bates; Cleo Bertelsmeier; Romain Bertrand; Rémy Beugnon; Jeremy Borderieux; Josef Brůna; Lauren Buckley; Jelena Bujan; Angelica Casanova‐Katny; Ditte Marie Christiansen; Flavien Collart; Emiel De Lombaerde; Karen De Pauw; Leen Depauw; Michele Di Musciano; Raquel Díaz Borrego; Joan Díaz‐Calafat; Diego Ellis‐Soto; Raquel Esteban; Geerte Fälthammar de Jong; Elise Gallois; Maria Begoña Garcia; Loïc Gillerot; Caroline Greiser; Eva Gril; Stef Haesen; Arndt Hampe; Per‐Ola Hedwall; Gabriel Hes; Helena Hespanhol; Raúl Hoffrén; Kristoffer Hylander; Borja Jiménez‐Alfaro; Tommaso Jucker; David Klinges; Joonas Kolstela; Martin Kopecký; Bence Kovács; Eduardo Eiji Maeda; František Máliš; Matěj Man; Corrie Mathiak; Eric Meineri; Ilona Naujokaitis‐Lewis; Ivan Nijs; Signe Normand; Martin Nuñez; Anna Orczewska; Pablo Peña‐Aguilera; Sylvain Pincebourde; Roman Plichta; Susan Quick; David Renault; Lorenzo Ricci; Tuuli Rissanen; Laura Segura‐Hernández; Federico Selvi; Josep M. Serra‐Diaz; Lydia Soifer; Fabien Spicher; Jens‐Christian Svenning; Anouch Tamian; Arno Thomaes; Marijke Thoonen; Brittany Trew; Stijn Van de Vondel; Liesbeth van den Brink; Pieter Vangansbeke; Sanne Verdonck; Michaela Vitkova; Maria Vives‐Ingla; Loke von Schmalensee; Runxi Wang; Jan Wild; Joseph Williamson; Florian Zellweger; Xiaqu Zhou; Emmanuel Junior Zuza; Pieter De Frenne;AbstractBrief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state‐of‐the‐art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024 United Kingdom, Italy, Spain, Denmark, United Kingdom, Norway, Austria, France, Finland, Belgium, United Kingdom, Belgium, Spain, Italy, United Kingdom, Austria, SpainPublisher:Wiley Funded by:SNSF | Climate change impacts on..., AKA | Investigating the geodive..., RCN | The role of Functional gr... +10 projectsSNSF| Climate change impacts on biodiversity: From macro- to microclimate ,AKA| Investigating the geodiversity-biodiversity relationship under climate change ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,ANR| SEEDFOR ,ANR| ASICS ,FWF| Land use, biological invasions and local species diversity ,SNSF| Quantifying potential species distribution shifts with climate change using field experiments and novel computational modeling approaches ,ANR| IMPRINT ,EC| THRESHOLD ,RCN| Indirect climate change impacts on alpine plant communities ,RCN| FUNDER - Direct and indirect climate impacts on the biodiversity and Functioning of the UNDERground ecosystem ,AKA| Atmosphere and Climate Competence Center (ACCC)Julia Kemppinen; Jonas J. Lembrechts; Koenraad Van Meerbeek; Jofre Carnicer; Nathalie Isabelle Chardon; Paul Kardol; Jonathan Lenoir; Daijun Liu; Ilya Maclean; Jan Pergl; Patrick Saccone; Rebecca A. Senior; Ting Shen; Sandra Słowińska; Vigdis Vandvik; Jonathan von Oppen; Juha Aalto; Biruk Ayalew; Olivia Bates; Cleo Bertelsmeier; Romain Bertrand; Rémy Beugnon; Jeremy Borderieux; Josef Brůna; Lauren Buckley; Jelena Bujan; Angelica Casanova‐Katny; Ditte Marie Christiansen; Flavien Collart; Emiel De Lombaerde; Karen De Pauw; Leen Depauw; Michele Di Musciano; Raquel Díaz Borrego; Joan Díaz‐Calafat; Diego Ellis‐Soto; Raquel Esteban; Geerte Fälthammar de Jong; Elise Gallois; Maria Begoña Garcia; Loïc Gillerot; Caroline Greiser; Eva Gril; Stef Haesen; Arndt Hampe; Per‐Ola Hedwall; Gabriel Hes; Helena Hespanhol; Raúl Hoffrén; Kristoffer Hylander; Borja Jiménez‐Alfaro; Tommaso Jucker; David Klinges; Joonas Kolstela; Martin Kopecký; Bence Kovács; Eduardo Eiji Maeda; František Máliš; Matěj Man; Corrie Mathiak; Eric Meineri; Ilona Naujokaitis‐Lewis; Ivan Nijs; Signe Normand; Martin Nuñez; Anna Orczewska; Pablo Peña‐Aguilera; Sylvain Pincebourde; Roman Plichta; Susan Quick; David Renault; Lorenzo Ricci; Tuuli Rissanen; Laura Segura‐Hernández; Federico Selvi; Josep M. Serra‐Diaz; Lydia Soifer; Fabien Spicher; Jens‐Christian Svenning; Anouch Tamian; Arno Thomaes; Marijke Thoonen; Brittany Trew; Stijn Van de Vondel; Liesbeth van den Brink; Pieter Vangansbeke; Sanne Verdonck; Michaela Vitkova; Maria Vives‐Ingla; Loke von Schmalensee; Runxi Wang; Jan Wild; Joseph Williamson; Florian Zellweger; Xiaqu Zhou; Emmanuel Junior Zuza; Pieter De Frenne;AbstractBrief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state‐of‐the‐art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Wiley Funded by:UKRI | Forecasting the impacts o..., SNSF | Climate change impacts on..., EC | FORMICA +2 projectsUKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| IMPRINTPieter De Frenne; Irena A. Koelemeijer; Kristoffer Hylander; Jérôme Ogée; Karen De Pauw; Caroline Greiser; Ditte M. Christiansen; Sanne Govaert; Juha Aalto; Juha Aalto; Tommaso Jucker; Pieter Vangansbeke; Miska Luoto; Camille Meeussen; Michael B. Ashcroft; David H. Klinges; Florian Zellweger; Eva Gril; Ronan Marrec; Jonathan Lenoir; Arndt Hampe; Guillaume Decocq; Jonas J. Lembrechts; Vilna Tyystjärvi; Vilna Tyystjärvi; Brett R. Scheffers;AbstractForest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 545 citations 545 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Wiley Funded by:UKRI | Forecasting the impacts o..., SNSF | Climate change impacts on..., EC | FORMICA +2 projectsUKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| IMPRINTPieter De Frenne; Irena A. Koelemeijer; Kristoffer Hylander; Jérôme Ogée; Karen De Pauw; Caroline Greiser; Ditte M. Christiansen; Sanne Govaert; Juha Aalto; Juha Aalto; Tommaso Jucker; Pieter Vangansbeke; Miska Luoto; Camille Meeussen; Michael B. Ashcroft; David H. Klinges; Florian Zellweger; Eva Gril; Ronan Marrec; Jonathan Lenoir; Arndt Hampe; Guillaume Decocq; Jonas J. Lembrechts; Vilna Tyystjärvi; Vilna Tyystjärvi; Brett R. Scheffers;AbstractForest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 545 citations 545 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Dec 2021Publisher:Dryad Authors: Christiansen, Ditte Marie; Iversen, Lars Lønsmann; Ehrlén, Johan; Hylander, Kristoffer;The data consist of 11436 plots inventoried for the National Inventory of Forests in Sweden between 1993-2017. The dataset has plot ID, year of inventory, basal area, basal area difference between inventories, proportion of spruce and pine, region, elevation, soil moisture index, relative elevation, northerness of slope, macroclimate temperature change (10 years), Community Temperature Indices of maximum and minimum temperatures of the understory communities (CTImax and CTImin). CTI values were calculated from presence/absence data of understory plants that were inventoried in a 100 m2 circular plot. Forest structures such as basal area and forest tree composition were measured from a larger circular plot of 300 m2 with the same centre. CTI were calculated as an average value of species-specific temperature preferences for all species present in the inventory for maximum and minimum temperatures, respectively. Elevation, Slope and Aspect were retrieved from a 50 meter resolution Digital Elevation Model of Sweden (the Swedish mapping, cadastral and land registration authority, www.lantmateriet.se). Relative Elevation was calculated from the Digital Elevation Model. We calculated relative elevation as the difference between the elevation of the plot and the minimum elevation in a 500 meter radius. We log-transformed relative elevation, as cold air pooling has a negative logarithmic relationship with relative elevation. Soil moisture index was extracted a 10 meter resolution map from the Swedish Environmental Protection Agency (http://www.naturvardsverket.se/Sa-mar-miljon/Kartor/Nationella-Marktackedata-NMD/). Macroclimate temperatures were extracted from TerraClimate (Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191) References for NFI data collection: Fridman, J. (2016). The Swedish National Forest Inventory. Swedish University of Agricultural Sciences. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/about-us/how-we-work/ Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements - The case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), 1–29. https://doi.org/10.14214/sf.1095 1. The local climate in forest understories can deviate substantially from ambient conditions. Moreover, forest microclimates are often characterized by cyclic changes driven by management activities such as clear-cutting and subsequent planting. To understand how and why understory plant communities change, both ambient climate change and temporal variation in forest structure has to be considered. 2. We used inventories from 11436 productive forest sites in Sweden repeated every 10th year 1993 - 2017 to examine how variation in forest structure influences changes in the average value of minimum and maximum temperature preferences of all species in a community, i.e. community temperature indices (CTI). We then evaluated to what extent these changes were driven by local extinctions and colonizations, respectively, and to what extent the difference in CTI value between two inventories were related to changes in forest density and in macroclimate. Lastly, we tested whether effects on CTI change by these two drivers were modified by topography, soil moisture and tree species composition. 3. CTI values of the understory plant communities increased after clear-cutting, and decreased during periods when the forest grew denser. During the period immediately after clear-cutting, changes were predominately driven by colonizations of species with a preference for higher temperatures. During the forest regeneration phase, both colonization by species preferring lower temperatures and local extinctions of species preferring higher temperatures increased. The change in understory CTI over 10-year periods was explained more by changes in forest density, than by changes in macroclimate. Soil moisture, topography and forest tree species composition modified to some extent the effects of changes in forest density and in macroclimate on understory CTI values. 4. Synthesis. Via stand manipulation, forest management impacts the effects of regional climate on understory plant communities. This implies that forest management by creating denser stands locally even can counterbalance the effects of regional changes in climate by creating denser stands locally. Consequently, interpretations of changes in the mean temperature preference of species in forest understory communities should take forest management regimes into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Dec 2021Publisher:Dryad Authors: Christiansen, Ditte Marie; Iversen, Lars Lønsmann; Ehrlén, Johan; Hylander, Kristoffer;The data consist of 11436 plots inventoried for the National Inventory of Forests in Sweden between 1993-2017. The dataset has plot ID, year of inventory, basal area, basal area difference between inventories, proportion of spruce and pine, region, elevation, soil moisture index, relative elevation, northerness of slope, macroclimate temperature change (10 years), Community Temperature Indices of maximum and minimum temperatures of the understory communities (CTImax and CTImin). CTI values were calculated from presence/absence data of understory plants that were inventoried in a 100 m2 circular plot. Forest structures such as basal area and forest tree composition were measured from a larger circular plot of 300 m2 with the same centre. CTI were calculated as an average value of species-specific temperature preferences for all species present in the inventory for maximum and minimum temperatures, respectively. Elevation, Slope and Aspect were retrieved from a 50 meter resolution Digital Elevation Model of Sweden (the Swedish mapping, cadastral and land registration authority, www.lantmateriet.se). Relative Elevation was calculated from the Digital Elevation Model. We calculated relative elevation as the difference between the elevation of the plot and the minimum elevation in a 500 meter radius. We log-transformed relative elevation, as cold air pooling has a negative logarithmic relationship with relative elevation. Soil moisture index was extracted a 10 meter resolution map from the Swedish Environmental Protection Agency (http://www.naturvardsverket.se/Sa-mar-miljon/Kartor/Nationella-Marktackedata-NMD/). Macroclimate temperatures were extracted from TerraClimate (Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191) References for NFI data collection: Fridman, J. (2016). The Swedish National Forest Inventory. Swedish University of Agricultural Sciences. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/about-us/how-we-work/ Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements - The case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), 1–29. https://doi.org/10.14214/sf.1095 1. The local climate in forest understories can deviate substantially from ambient conditions. Moreover, forest microclimates are often characterized by cyclic changes driven by management activities such as clear-cutting and subsequent planting. To understand how and why understory plant communities change, both ambient climate change and temporal variation in forest structure has to be considered. 2. We used inventories from 11436 productive forest sites in Sweden repeated every 10th year 1993 - 2017 to examine how variation in forest structure influences changes in the average value of minimum and maximum temperature preferences of all species in a community, i.e. community temperature indices (CTI). We then evaluated to what extent these changes were driven by local extinctions and colonizations, respectively, and to what extent the difference in CTI value between two inventories were related to changes in forest density and in macroclimate. Lastly, we tested whether effects on CTI change by these two drivers were modified by topography, soil moisture and tree species composition. 3. CTI values of the understory plant communities increased after clear-cutting, and decreased during periods when the forest grew denser. During the period immediately after clear-cutting, changes were predominately driven by colonizations of species with a preference for higher temperatures. During the forest regeneration phase, both colonization by species preferring lower temperatures and local extinctions of species preferring higher temperatures increased. The change in understory CTI over 10-year periods was explained more by changes in forest density, than by changes in macroclimate. Soil moisture, topography and forest tree species composition modified to some extent the effects of changes in forest density and in macroclimate on understory CTI values. 4. Synthesis. Via stand manipulation, forest management impacts the effects of regional climate on understory plant communities. This implies that forest management by creating denser stands locally even can counterbalance the effects of regional changes in climate by creating denser stands locally. Consequently, interpretations of changes in the mean temperature preference of species in forest understory communities should take forest management regimes into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Kristoffer Hylander; Caroline Greiser; Ditte M. Christiansen; Irena A. Koelemeijer;doi: 10.1111/cobi.13847
pmid: 34622491
AbstractConservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold‐favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold‐favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm‐favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Kristoffer Hylander; Caroline Greiser; Ditte M. Christiansen; Irena A. Koelemeijer;doi: 10.1111/cobi.13847
pmid: 34622491
AbstractConservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold‐favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold‐favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm‐favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceKemppinen, Julia; Lembrechts, Jonas; van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca; Shen, Ting; Słowińska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo; Bertrand, Romain; Beugnon, Rémy; Borderieux, Jeremy; Brůna, Josef; Buckley, Lauren; Bujan, Jelena; Casanova-Katny, Angelica; Christiansen, Ditte Marie; Collart, Flavien; de Lombaerde, Emiel; de Pauw, Karen; Depauw, Leen; Di Musciano, Michele; Díaz Borrego, Raquel; Díaz-Calafat, Joan; Ellis-Soto, Diego; Esteban, Raquel; de Jong, Geerte Fälthammar; Gallois, Elise; Garcia, Maria Begoña; Gillerot, Loïc; Greiser, Caroline; Gril, Eva; Haesen, Stef; Hampe, Arndt; Hedwall, Per‐ola; Hes, Gabriel; Hespanhol, Helena; Hoffrén, Raúl; Hylander, Kristoffer; Jiménez-Alfaro, Borja; Jucker, Tommaso; Klinges, David; Kolstela, Joonas; Kopecký, Martin; Kovács, Bence; Maeda, Eduardo Eiji; Máliš, František; Man, Matěj; Mathiak, Corrie; Meineri, Eric; Naujokaitis-Lewis, Ilona; Nijs, Ivan; Normand, Signe; Nuñez, Martin; Orczewska, Anna; Peña-Aguilera, Pablo; Pincebourde, Sylvain; Plichta, Roman; Quick, Susan; Renault, David; Ricci, Lorenzo; Rissanen, Tuuli; Segura-Hernández, Laura; Selvi, Federico; Serra-Diaz, Josep; Soifer, Lydia; Spicher, Fabien; Svenning, Jens‐christian; Tamian, Anouch; Thomaes, Arno; Thoonen, Marijke; Trew, Brittany; van de Vondel, Stijn; van den Brink, Liesbeth; Vangansbeke, Pieter; Verdonck, Sanne; Vitkova, Michaela; Vives-Ingla, Maria; von Schmalensee, Loke; Wang, Runxi; Wild, Jan; Williamson, Joseph; Zellweger, Florian; Zhou, Xiaqu; Zuza, Emmanuel Junior; de Frenne, Pieter;Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f55fdb7c196de532159a4c85481da694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Authors: Nanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; +3 AuthorsNanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; Kirsten Christoffersen; Kirsten Christoffersen; Ditte Marie Christiansen;Mosses often dominate the submerged vegetation in Arctic lakes and ponds, making them essential contributors to the primary production in these habitats. However, little is known about the factors controlling annual growth of Arctic mosses and their sensitivity to climatic changes. It has been suggested that nutrient translocation occurs in mosses, and that annual growth of mosses therefore depends strongly on weather conditions and less on local environmental conditions. In this study, we examined annual growth of Drepanocladus trifarius ((F. Weber and D. Mohr) Broth.) from two ponds in West Greenland in relation to weather conditions. A reconstruction of annual growth increments from 2009 to 2014 was made in 200 individual mosses, and biomass and length were related to different weather parameters. In addition, we examined whether there would be an indication of nutrient translocation across annual growth segments. We found a positive relationship between mean summer temperature and growth segment length, which indicates the importance of temperature during seasons with sufficient light levels for growth of the D. trifarius. Weather parameters associated with light conditions had no significant effect on growth, which probably reflect that D. trifarius in two shallow ponds were not light limited. The nutrient stoichiometry showed that phosphorus (P) contents in the tissue were low (0.04–0.11% DW), and nutrient resorption efficiencies of P amounted to 11–29%. This suggests that D. trifarius was P limited during its growth season, but appears capable of nutrient translocation across annual segments, possibly to maintain growth in oligotrophic environments. Despite low nitrogen (N) contents (0.94–2.09%), no resorption of N was found, which indicates that D. trifarius was not N-limited in order to sustain growth. In conclusion, this study shows that growth of D. trifarius in small high Arctic ponds are mainly controlled by summer temperatures.
Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Springer Science and Business Media LLC Authors: Nanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; +3 AuthorsNanna Slaikjer Petersen; Simone Møller Mortensen; Kirstine Thiemer; Kirstine Thiemer; Kirsten Christoffersen; Kirsten Christoffersen; Ditte Marie Christiansen;Mosses often dominate the submerged vegetation in Arctic lakes and ponds, making them essential contributors to the primary production in these habitats. However, little is known about the factors controlling annual growth of Arctic mosses and their sensitivity to climatic changes. It has been suggested that nutrient translocation occurs in mosses, and that annual growth of mosses therefore depends strongly on weather conditions and less on local environmental conditions. In this study, we examined annual growth of Drepanocladus trifarius ((F. Weber and D. Mohr) Broth.) from two ponds in West Greenland in relation to weather conditions. A reconstruction of annual growth increments from 2009 to 2014 was made in 200 individual mosses, and biomass and length were related to different weather parameters. In addition, we examined whether there would be an indication of nutrient translocation across annual growth segments. We found a positive relationship between mean summer temperature and growth segment length, which indicates the importance of temperature during seasons with sufficient light levels for growth of the D. trifarius. Weather parameters associated with light conditions had no significant effect on growth, which probably reflect that D. trifarius in two shallow ponds were not light limited. The nutrient stoichiometry showed that phosphorus (P) contents in the tissue were low (0.04–0.11% DW), and nutrient resorption efficiencies of P amounted to 11–29%. This suggests that D. trifarius was P limited during its growth season, but appears capable of nutrient translocation across annual segments, possibly to maintain growth in oligotrophic environments. Despite low nitrogen (N) contents (0.94–2.09%), no resorption of N was found, which indicates that D. trifarius was not N-limited in order to sustain growth. In conclusion, this study shows that growth of D. trifarius in small high Arctic ponds are mainly controlled by summer temperatures.
Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polar Biology arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-018-2371-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Denmark, SpainPublisher:Wiley Ditte M. Christiansen; Gesa Römer; Johan P. Dahlgren; Malin Borg; Owen R. Jones; Sonia Merinero; Kristoffer Hylander; Johan Ehrlén;doi: 10.1002/ecy.4191
pmid: 37878669
AbstractClimate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small‐scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism‐relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Denmark, SpainPublisher:Wiley Ditte M. Christiansen; Gesa Römer; Johan P. Dahlgren; Malin Borg; Owen R. Jones; Sonia Merinero; Kristoffer Hylander; Johan Ehrlén;doi: 10.1002/ecy.4191
pmid: 37878669
AbstractClimate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small‐scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism‐relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions.
Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.4191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024 United Kingdom, Italy, Spain, Denmark, United Kingdom, Norway, Austria, France, Finland, Belgium, United Kingdom, Belgium, Spain, Italy, United Kingdom, Austria, SpainPublisher:Wiley Funded by:SNSF | Climate change impacts on..., AKA | Investigating the geodive..., RCN | The role of Functional gr... +10 projectsSNSF| Climate change impacts on biodiversity: From macro- to microclimate ,AKA| Investigating the geodiversity-biodiversity relationship under climate change ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,ANR| SEEDFOR ,ANR| ASICS ,FWF| Land use, biological invasions and local species diversity ,SNSF| Quantifying potential species distribution shifts with climate change using field experiments and novel computational modeling approaches ,ANR| IMPRINT ,EC| THRESHOLD ,RCN| Indirect climate change impacts on alpine plant communities ,RCN| FUNDER - Direct and indirect climate impacts on the biodiversity and Functioning of the UNDERground ecosystem ,AKA| Atmosphere and Climate Competence Center (ACCC)Julia Kemppinen; Jonas J. Lembrechts; Koenraad Van Meerbeek; Jofre Carnicer; Nathalie Isabelle Chardon; Paul Kardol; Jonathan Lenoir; Daijun Liu; Ilya Maclean; Jan Pergl; Patrick Saccone; Rebecca A. Senior; Ting Shen; Sandra Słowińska; Vigdis Vandvik; Jonathan von Oppen; Juha Aalto; Biruk Ayalew; Olivia Bates; Cleo Bertelsmeier; Romain Bertrand; Rémy Beugnon; Jeremy Borderieux; Josef Brůna; Lauren Buckley; Jelena Bujan; Angelica Casanova‐Katny; Ditte Marie Christiansen; Flavien Collart; Emiel De Lombaerde; Karen De Pauw; Leen Depauw; Michele Di Musciano; Raquel Díaz Borrego; Joan Díaz‐Calafat; Diego Ellis‐Soto; Raquel Esteban; Geerte Fälthammar de Jong; Elise Gallois; Maria Begoña Garcia; Loïc Gillerot; Caroline Greiser; Eva Gril; Stef Haesen; Arndt Hampe; Per‐Ola Hedwall; Gabriel Hes; Helena Hespanhol; Raúl Hoffrén; Kristoffer Hylander; Borja Jiménez‐Alfaro; Tommaso Jucker; David Klinges; Joonas Kolstela; Martin Kopecký; Bence Kovács; Eduardo Eiji Maeda; František Máliš; Matěj Man; Corrie Mathiak; Eric Meineri; Ilona Naujokaitis‐Lewis; Ivan Nijs; Signe Normand; Martin Nuñez; Anna Orczewska; Pablo Peña‐Aguilera; Sylvain Pincebourde; Roman Plichta; Susan Quick; David Renault; Lorenzo Ricci; Tuuli Rissanen; Laura Segura‐Hernández; Federico Selvi; Josep M. Serra‐Diaz; Lydia Soifer; Fabien Spicher; Jens‐Christian Svenning; Anouch Tamian; Arno Thomaes; Marijke Thoonen; Brittany Trew; Stijn Van de Vondel; Liesbeth van den Brink; Pieter Vangansbeke; Sanne Verdonck; Michaela Vitkova; Maria Vives‐Ingla; Loke von Schmalensee; Runxi Wang; Jan Wild; Joseph Williamson; Florian Zellweger; Xiaqu Zhou; Emmanuel Junior Zuza; Pieter De Frenne;AbstractBrief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state‐of‐the‐art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024 United Kingdom, Italy, Spain, Denmark, United Kingdom, Norway, Austria, France, Finland, Belgium, United Kingdom, Belgium, Spain, Italy, United Kingdom, Austria, SpainPublisher:Wiley Funded by:SNSF | Climate change impacts on..., AKA | Investigating the geodive..., RCN | The role of Functional gr... +10 projectsSNSF| Climate change impacts on biodiversity: From macro- to microclimate ,AKA| Investigating the geodiversity-biodiversity relationship under climate change ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,ANR| SEEDFOR ,ANR| ASICS ,FWF| Land use, biological invasions and local species diversity ,SNSF| Quantifying potential species distribution shifts with climate change using field experiments and novel computational modeling approaches ,ANR| IMPRINT ,EC| THRESHOLD ,RCN| Indirect climate change impacts on alpine plant communities ,RCN| FUNDER - Direct and indirect climate impacts on the biodiversity and Functioning of the UNDERground ecosystem ,AKA| Atmosphere and Climate Competence Center (ACCC)Julia Kemppinen; Jonas J. Lembrechts; Koenraad Van Meerbeek; Jofre Carnicer; Nathalie Isabelle Chardon; Paul Kardol; Jonathan Lenoir; Daijun Liu; Ilya Maclean; Jan Pergl; Patrick Saccone; Rebecca A. Senior; Ting Shen; Sandra Słowińska; Vigdis Vandvik; Jonathan von Oppen; Juha Aalto; Biruk Ayalew; Olivia Bates; Cleo Bertelsmeier; Romain Bertrand; Rémy Beugnon; Jeremy Borderieux; Josef Brůna; Lauren Buckley; Jelena Bujan; Angelica Casanova‐Katny; Ditte Marie Christiansen; Flavien Collart; Emiel De Lombaerde; Karen De Pauw; Leen Depauw; Michele Di Musciano; Raquel Díaz Borrego; Joan Díaz‐Calafat; Diego Ellis‐Soto; Raquel Esteban; Geerte Fälthammar de Jong; Elise Gallois; Maria Begoña Garcia; Loïc Gillerot; Caroline Greiser; Eva Gril; Stef Haesen; Arndt Hampe; Per‐Ola Hedwall; Gabriel Hes; Helena Hespanhol; Raúl Hoffrén; Kristoffer Hylander; Borja Jiménez‐Alfaro; Tommaso Jucker; David Klinges; Joonas Kolstela; Martin Kopecký; Bence Kovács; Eduardo Eiji Maeda; František Máliš; Matěj Man; Corrie Mathiak; Eric Meineri; Ilona Naujokaitis‐Lewis; Ivan Nijs; Signe Normand; Martin Nuñez; Anna Orczewska; Pablo Peña‐Aguilera; Sylvain Pincebourde; Roman Plichta; Susan Quick; David Renault; Lorenzo Ricci; Tuuli Rissanen; Laura Segura‐Hernández; Federico Selvi; Josep M. Serra‐Diaz; Lydia Soifer; Fabien Spicher; Jens‐Christian Svenning; Anouch Tamian; Arno Thomaes; Marijke Thoonen; Brittany Trew; Stijn Van de Vondel; Liesbeth van den Brink; Pieter Vangansbeke; Sanne Verdonck; Michaela Vitkova; Maria Vives‐Ingla; Loke von Schmalensee; Runxi Wang; Jan Wild; Joseph Williamson; Florian Zellweger; Xiaqu Zhou; Emmanuel Junior Zuza; Pieter De Frenne;AbstractBrief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state‐of‐the‐art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2024License: CC BY SADigital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/133382Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2024License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Wiley Funded by:UKRI | Forecasting the impacts o..., SNSF | Climate change impacts on..., EC | FORMICA +2 projectsUKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| IMPRINTPieter De Frenne; Irena A. Koelemeijer; Kristoffer Hylander; Jérôme Ogée; Karen De Pauw; Caroline Greiser; Ditte M. Christiansen; Sanne Govaert; Juha Aalto; Juha Aalto; Tommaso Jucker; Pieter Vangansbeke; Miska Luoto; Camille Meeussen; Michael B. Ashcroft; David H. Klinges; Florian Zellweger; Eva Gril; Ronan Marrec; Jonathan Lenoir; Arndt Hampe; Guillaume Decocq; Jonas J. Lembrechts; Vilna Tyystjärvi; Vilna Tyystjärvi; Brett R. Scheffers;AbstractForest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 545 citations 545 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 BelgiumPublisher:Wiley Funded by:UKRI | Forecasting the impacts o..., SNSF | Climate change impacts on..., EC | FORMICA +2 projectsUKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| IMPRINTPieter De Frenne; Irena A. Koelemeijer; Kristoffer Hylander; Jérôme Ogée; Karen De Pauw; Caroline Greiser; Ditte M. Christiansen; Sanne Govaert; Juha Aalto; Juha Aalto; Tommaso Jucker; Pieter Vangansbeke; Miska Luoto; Camille Meeussen; Michael B. Ashcroft; David H. Klinges; Florian Zellweger; Eva Gril; Ronan Marrec; Jonathan Lenoir; Arndt Hampe; Guillaume Decocq; Jonas J. Lembrechts; Vilna Tyystjärvi; Vilna Tyystjärvi; Brett R. Scheffers;AbstractForest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 545 citations 545 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Dec 2021Publisher:Dryad Authors: Christiansen, Ditte Marie; Iversen, Lars Lønsmann; Ehrlén, Johan; Hylander, Kristoffer;The data consist of 11436 plots inventoried for the National Inventory of Forests in Sweden between 1993-2017. The dataset has plot ID, year of inventory, basal area, basal area difference between inventories, proportion of spruce and pine, region, elevation, soil moisture index, relative elevation, northerness of slope, macroclimate temperature change (10 years), Community Temperature Indices of maximum and minimum temperatures of the understory communities (CTImax and CTImin). CTI values were calculated from presence/absence data of understory plants that were inventoried in a 100 m2 circular plot. Forest structures such as basal area and forest tree composition were measured from a larger circular plot of 300 m2 with the same centre. CTI were calculated as an average value of species-specific temperature preferences for all species present in the inventory for maximum and minimum temperatures, respectively. Elevation, Slope and Aspect were retrieved from a 50 meter resolution Digital Elevation Model of Sweden (the Swedish mapping, cadastral and land registration authority, www.lantmateriet.se). Relative Elevation was calculated from the Digital Elevation Model. We calculated relative elevation as the difference between the elevation of the plot and the minimum elevation in a 500 meter radius. We log-transformed relative elevation, as cold air pooling has a negative logarithmic relationship with relative elevation. Soil moisture index was extracted a 10 meter resolution map from the Swedish Environmental Protection Agency (http://www.naturvardsverket.se/Sa-mar-miljon/Kartor/Nationella-Marktackedata-NMD/). Macroclimate temperatures were extracted from TerraClimate (Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191) References for NFI data collection: Fridman, J. (2016). The Swedish National Forest Inventory. Swedish University of Agricultural Sciences. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/about-us/how-we-work/ Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements - The case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), 1–29. https://doi.org/10.14214/sf.1095 1. The local climate in forest understories can deviate substantially from ambient conditions. Moreover, forest microclimates are often characterized by cyclic changes driven by management activities such as clear-cutting and subsequent planting. To understand how and why understory plant communities change, both ambient climate change and temporal variation in forest structure has to be considered. 2. We used inventories from 11436 productive forest sites in Sweden repeated every 10th year 1993 - 2017 to examine how variation in forest structure influences changes in the average value of minimum and maximum temperature preferences of all species in a community, i.e. community temperature indices (CTI). We then evaluated to what extent these changes were driven by local extinctions and colonizations, respectively, and to what extent the difference in CTI value between two inventories were related to changes in forest density and in macroclimate. Lastly, we tested whether effects on CTI change by these two drivers were modified by topography, soil moisture and tree species composition. 3. CTI values of the understory plant communities increased after clear-cutting, and decreased during periods when the forest grew denser. During the period immediately after clear-cutting, changes were predominately driven by colonizations of species with a preference for higher temperatures. During the forest regeneration phase, both colonization by species preferring lower temperatures and local extinctions of species preferring higher temperatures increased. The change in understory CTI over 10-year periods was explained more by changes in forest density, than by changes in macroclimate. Soil moisture, topography and forest tree species composition modified to some extent the effects of changes in forest density and in macroclimate on understory CTI values. 4. Synthesis. Via stand manipulation, forest management impacts the effects of regional climate on understory plant communities. This implies that forest management by creating denser stands locally even can counterbalance the effects of regional changes in climate by creating denser stands locally. Consequently, interpretations of changes in the mean temperature preference of species in forest understory communities should take forest management regimes into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Dec 2021Publisher:Dryad Authors: Christiansen, Ditte Marie; Iversen, Lars Lønsmann; Ehrlén, Johan; Hylander, Kristoffer;The data consist of 11436 plots inventoried for the National Inventory of Forests in Sweden between 1993-2017. The dataset has plot ID, year of inventory, basal area, basal area difference between inventories, proportion of spruce and pine, region, elevation, soil moisture index, relative elevation, northerness of slope, macroclimate temperature change (10 years), Community Temperature Indices of maximum and minimum temperatures of the understory communities (CTImax and CTImin). CTI values were calculated from presence/absence data of understory plants that were inventoried in a 100 m2 circular plot. Forest structures such as basal area and forest tree composition were measured from a larger circular plot of 300 m2 with the same centre. CTI were calculated as an average value of species-specific temperature preferences for all species present in the inventory for maximum and minimum temperatures, respectively. Elevation, Slope and Aspect were retrieved from a 50 meter resolution Digital Elevation Model of Sweden (the Swedish mapping, cadastral and land registration authority, www.lantmateriet.se). Relative Elevation was calculated from the Digital Elevation Model. We calculated relative elevation as the difference between the elevation of the plot and the minimum elevation in a 500 meter radius. We log-transformed relative elevation, as cold air pooling has a negative logarithmic relationship with relative elevation. Soil moisture index was extracted a 10 meter resolution map from the Swedish Environmental Protection Agency (http://www.naturvardsverket.se/Sa-mar-miljon/Kartor/Nationella-Marktackedata-NMD/). Macroclimate temperatures were extracted from TerraClimate (Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191) References for NFI data collection: Fridman, J. (2016). The Swedish National Forest Inventory. Swedish University of Agricultural Sciences. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/about-us/how-we-work/ Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., & Ståhl, G. (2014). Adapting National Forest Inventories to changing requirements - The case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), 1–29. https://doi.org/10.14214/sf.1095 1. The local climate in forest understories can deviate substantially from ambient conditions. Moreover, forest microclimates are often characterized by cyclic changes driven by management activities such as clear-cutting and subsequent planting. To understand how and why understory plant communities change, both ambient climate change and temporal variation in forest structure has to be considered. 2. We used inventories from 11436 productive forest sites in Sweden repeated every 10th year 1993 - 2017 to examine how variation in forest structure influences changes in the average value of minimum and maximum temperature preferences of all species in a community, i.e. community temperature indices (CTI). We then evaluated to what extent these changes were driven by local extinctions and colonizations, respectively, and to what extent the difference in CTI value between two inventories were related to changes in forest density and in macroclimate. Lastly, we tested whether effects on CTI change by these two drivers were modified by topography, soil moisture and tree species composition. 3. CTI values of the understory plant communities increased after clear-cutting, and decreased during periods when the forest grew denser. During the period immediately after clear-cutting, changes were predominately driven by colonizations of species with a preference for higher temperatures. During the forest regeneration phase, both colonization by species preferring lower temperatures and local extinctions of species preferring higher temperatures increased. The change in understory CTI over 10-year periods was explained more by changes in forest density, than by changes in macroclimate. Soil moisture, topography and forest tree species composition modified to some extent the effects of changes in forest density and in macroclimate on understory CTI values. 4. Synthesis. Via stand manipulation, forest management impacts the effects of regional climate on understory plant communities. This implies that forest management by creating denser stands locally even can counterbalance the effects of regional changes in climate by creating denser stands locally. Consequently, interpretations of changes in the mean temperature preference of species in forest understory communities should take forest management regimes into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q573n5tjk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Kristoffer Hylander; Caroline Greiser; Ditte M. Christiansen; Irena A. Koelemeijer;doi: 10.1111/cobi.13847
pmid: 34622491
AbstractConservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold‐favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold‐favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm‐favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Kristoffer Hylander; Caroline Greiser; Ditte M. Christiansen; Irena A. Koelemeijer;doi: 10.1111/cobi.13847
pmid: 34622491
AbstractConservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold‐favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold‐favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm‐favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu