Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sunil Kumar; Thomas Gross; Hiya Dhar; Lena Breitenmoser; +4 Authors

    The quest for improved living conditions in rapidly growing Indian communities puts pressure on natural resources and produces emissions which harm the environment, society and the economy. Current municipal solid waste (MSW) practices are an important example, as most waste remains untreated and is often deposited on unsafe dumpsites or burned on open fires. Anaerobic digestion (AD) is an option to treat the large biodegradable fraction ('biowaste'). In rural parts of India, the technology to supply energy from biogas has been promoted for 30 years. Biowaste treatment in urban MSW management and organic fertilizer ('digestate') production for agriculture via AD have more recently gained attention but with limited success so far. Recent environmental policies in waste, energy, agricultural and other sectors have, however, set important cornerstones for a broader diffusion in the coming years. On the basis of peer-reviewed literature and governmental reports, we identify barriers and enabling factors along the AD chain (biowaste to technology to product utilization), and analyse relevant boundary conditions for the new multi-sector policies. We show that AD implementation has repeatedly failed due to unrealistic assumptions on biowaste quantity and quality, underestimation of the complex biowaste supply chain, unsuitable AD designs and overestimation of economic returns from biogas and digestate. Local knowledge and capacities for planning and process control are lacking in many places and resources required for operation and maintenance in the long run have often been ignored. We found that the multi-facetted value propositions of AD - including biowaste treatment, energy and fertilizer products - have only been partially tapped due to the exclusive focus on biogas. The new sector policies provide important enabling factors for change. Decentralized AD plants operating on a few tons biowaste per day from reliable and manageable sources (e.g. fruit and vegetable markets) could be a more promising step forward than large-scale investments which rely on large biowaste volumes from various sources. The parallel development of biowaste management, planning tools for municipalities, standardized digestate monitoring protocols and studies on simple, low-cost optimization measures for methane recovery from a wide range of biowastes and innovative high-solid AD digester designs will be prerequisites for the long-term future of AD projects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    91
    citations91
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lena Breitenmoser; T. Gross; T. Gross; Sanjay Kumar; +4 Authors

    Anaerobic digestion (AD) of biowaste seems promising to provide renewable energy (biogas) and organic fertilizers (digestate) and mitigate environmental pollution in India. Intersectoral analyses of biowaste management in municipalities are needed to reveal benefits and trade-offs of AD at the implementation-level. Therefore, we applied material flow analyses (MFAs) to quantify effects of potential AD treatment of biowaste on energy and fertilizer supply, water consumption and environmental pollution in two villages, two towns and two cities in Maharashtra. Results show that in villages AD of available manure and crop residues can cover over half of the energy consumption for cooking (EC) and reduce firewood dependency. In towns and cities, AD of municipal biowaste is more relevant for organic fertilizer supply and pollution control because digestate can provide up to several times the nutrient requirements for crop production, but can harm ecosystems when discharged to the environment. Hence, in addition to energy from municipal biowaste - which can supply 4-6% of EC - digestate valorisation seems vital but requires appropriate post-treatment, quality control and trust building with farmers. To minimize trade-offs, water-saving options should be considered because 2-20% of current groundwater abstraction in municipalities is required to treat all available biowaste with ’wet’ AD systems compared to <3% with ’dry’ AD systems. We conclude that biowaste management with AD requires contextualized solutions in the setting of energy, fertilizers and water at the implementation-level to conceive valorization strategies for all AD products, reduce environmental pollution and minimize trade-offs with water resources.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.48350/16...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.48350/16...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milan Bakre; Rakesh Kumar; Sunil Kumar; Christoph Hugi; +5 Authors

    Anaerobic digestion (AD) of biowaste can generate biogas with methane (CH4) as energy source and contribute to sustainable municipal solid waste management in India. Characteristic municipal biowastes sampled seasonally from household, fruit and vegetable market and agricultural waste collection points in villages, towns and cities in Maharashtra were analysed to assess the potential as substrate for AD. The mean biochemical methane potential (BMP, at 37 °C) across seasons and community sizes was between 200-260, 175-240 and 101-286 NLCH4 kgvs-1 for household, market and agricultural biowaste, respectively. CH4 yields were comparable in villages, towns and cities. Seasonal variations in CH4 yields were observed for market and agricultural biowaste with highest values during pre-monsoon season. Results underpin that municipal biowaste is a suitable substrate for AD in India. However, low purity of available biowaste resulted in lower CH4 yields compared to recent studies using source-segregated biowaste.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sunil Kumar; Thomas Gross; Hiya Dhar; Lena Breitenmoser; +4 Authors

    The quest for improved living conditions in rapidly growing Indian communities puts pressure on natural resources and produces emissions which harm the environment, society and the economy. Current municipal solid waste (MSW) practices are an important example, as most waste remains untreated and is often deposited on unsafe dumpsites or burned on open fires. Anaerobic digestion (AD) is an option to treat the large biodegradable fraction ('biowaste'). In rural parts of India, the technology to supply energy from biogas has been promoted for 30 years. Biowaste treatment in urban MSW management and organic fertilizer ('digestate') production for agriculture via AD have more recently gained attention but with limited success so far. Recent environmental policies in waste, energy, agricultural and other sectors have, however, set important cornerstones for a broader diffusion in the coming years. On the basis of peer-reviewed literature and governmental reports, we identify barriers and enabling factors along the AD chain (biowaste to technology to product utilization), and analyse relevant boundary conditions for the new multi-sector policies. We show that AD implementation has repeatedly failed due to unrealistic assumptions on biowaste quantity and quality, underestimation of the complex biowaste supply chain, unsuitable AD designs and overestimation of economic returns from biogas and digestate. Local knowledge and capacities for planning and process control are lacking in many places and resources required for operation and maintenance in the long run have often been ignored. We found that the multi-facetted value propositions of AD - including biowaste treatment, energy and fertilizer products - have only been partially tapped due to the exclusive focus on biogas. The new sector policies provide important enabling factors for change. Decentralized AD plants operating on a few tons biowaste per day from reliable and manageable sources (e.g. fruit and vegetable markets) could be a more promising step forward than large-scale investments which rely on large biowaste volumes from various sources. The parallel development of biowaste management, planning tools for municipalities, standardized digestate monitoring protocols and studies on simple, low-cost optimization measures for methane recovery from a wide range of biowastes and innovative high-solid AD digester designs will be prerequisites for the long-term future of AD projects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    91
    citations91
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lena Breitenmoser; T. Gross; T. Gross; Sanjay Kumar; +4 Authors

    Anaerobic digestion (AD) of biowaste seems promising to provide renewable energy (biogas) and organic fertilizers (digestate) and mitigate environmental pollution in India. Intersectoral analyses of biowaste management in municipalities are needed to reveal benefits and trade-offs of AD at the implementation-level. Therefore, we applied material flow analyses (MFAs) to quantify effects of potential AD treatment of biowaste on energy and fertilizer supply, water consumption and environmental pollution in two villages, two towns and two cities in Maharashtra. Results show that in villages AD of available manure and crop residues can cover over half of the energy consumption for cooking (EC) and reduce firewood dependency. In towns and cities, AD of municipal biowaste is more relevant for organic fertilizer supply and pollution control because digestate can provide up to several times the nutrient requirements for crop production, but can harm ecosystems when discharged to the environment. Hence, in addition to energy from municipal biowaste - which can supply 4-6% of EC - digestate valorisation seems vital but requires appropriate post-treatment, quality control and trust building with farmers. To minimize trade-offs, water-saving options should be considered because 2-20% of current groundwater abstraction in municipalities is required to treat all available biowaste with ’wet’ AD systems compared to <3% with ’dry’ AD systems. We conclude that biowaste management with AD requires contextualized solutions in the setting of energy, fertilizers and water at the implementation-level to conceive valorization strategies for all AD products, reduce environmental pollution and minimize trade-offs with water resources.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Resources Conservation and Recycling
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.48350/16...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Resources Conservati...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Resources Conservation and Recycling
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.48350/16...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milan Bakre; Rakesh Kumar; Sunil Kumar; Christoph Hugi; +5 Authors

    Anaerobic digestion (AD) of biowaste can generate biogas with methane (CH4) as energy source and contribute to sustainable municipal solid waste management in India. Characteristic municipal biowastes sampled seasonally from household, fruit and vegetable market and agricultural waste collection points in villages, towns and cities in Maharashtra were analysed to assess the potential as substrate for AD. The mean biochemical methane potential (BMP, at 37 °C) across seasons and community sizes was between 200-260, 175-240 and 101-286 NLCH4 kgvs-1 for household, market and agricultural biowaste, respectively. CH4 yields were comparable in villages, towns and cities. Seasonal variations in CH4 yields were observed for market and agricultural biowaste with highest values during pre-monsoon season. Results underpin that municipal biowaste is a suitable substrate for AD in India. However, low purity of available biowaste resulted in lower CH4 yields compared to recent studies using source-segregated biowaste.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph