Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Philippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; +54 Authors

    Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/bgd-10...
    Article . 2013 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.biogeosciences.net...
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Research . 2013
    License: CC BY
    https://dx.doi.org/10.60692/98...
    Other literature type . 2014
    Data sources: Datacite
    https://dx.doi.org/10.60692/x7...
    Other literature type . 2014
    Data sources: Datacite
    Research Collection
    Research . 2013
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    9
    citations9
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/bgd-10...
      Article . 2013 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://www.biogeosciences.net...
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Research . 2013
      License: CC BY
      https://dx.doi.org/10.60692/98...
      Other literature type . 2014
      Data sources: Datacite
      https://dx.doi.org/10.60692/x7...
      Other literature type . 2014
      Data sources: Datacite
      Research Collection
      Research . 2013
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Philippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; +53 Authors

    Résumé. Un système d'observation et d'analyse du carbone intégré à l'échelle mondiale est nécessaire pour améliorer la compréhension fondamentale du cycle mondial du carbone, pour améliorer notre capacité à projeter les changements futurs et pour vérifier l'efficacité des politiques visant à réduire les émissions de gaz à effet de serre et à augmenter la séquestration du carbone. La construction d'un système intégré d'observation du carbone nécessite des avancées transformationnelles du cadre exploratoire clairsemé existant vers un système dense, robuste et durable dans toutes ses composantes : les émissions anthropiques, l'atmosphère, l'océan et la biosphère terrestre. L'objectif de cette étude est d'identifier l'état actuel des observations de carbone et les besoins d'un système mondial intégré d'observation du carbone qui peut être construit au cours de la prochaine décennie. Une conclusion clé est l'expansion substantielle (de plusieurs ordres de grandeur) des réseaux d'observation au sol nécessaires pour atteindre la haute résolution spatiale pour les flux de CO2 et de CH4 et pour les stocks de carbone afin de répondre aux objectifs politiques pertinents et d'attribuer les changements de flux aux processus sous-jacents dans chaque région. Afin d'établir des diagnostics de flux et de stocks sur des zones éloignées telles que les océans du sud, les forêts tropicales et l'Arctique, les observations in situ devront être complétées par des mesures de télédétection. La télédétection offre l'avantage d'une couverture spatiale dense et de revisites fréquentes. Un défi clé consiste à amener les mesures de télédétection à un niveau de cohérence et de précision à long terme afin qu'elles puissent être efficacement combinées dans des modèles pour réduire les incertitudes, en synergie avec les données au sol. Apporter des contraintes d'observation strictes sur les émissions de combustibles fossiles et de changement d'affectation des terres sera le plus grand défi pour le déploiement d'un système intégré d'observation du carbone pertinent pour les politiques. Cela nécessitera des données in situ et de télédétection à une résolution et une densité beaucoup plus élevées que celles actuellement atteintes pour les flux naturels, bien que sur une petite superficie (villes, sites industriels, centrales électriques), ainsi que l'inclusion de mesures indirectes de CO2 de combustibles fossiles telles que le radiocarbone dans les traceurs de combustion de CO2 et de carbone. En outre, un système de surveillance du carbone pertinent pour les politiques devrait également fournir des mécanismes pour concilier les estimations des flux régionaux descendants (basés sur l'atmosphère) et ascendants (basés sur la surface) sur toute la gamme des échelles spatiales et temporelles pertinentes pour les politiques d'atténuation. Le succès du système reposera sur des engagements à long terme en matière de suivi, sur une meilleure collaboration internationale pour combler les lacunes dans les observations actuelles, sur des efforts soutenus pour améliorer l'accès aux différents flux de données et rendre les bases de données interopérables, et sur l'étalonnage de chaque composante du système à des échelles internationales convenues. Resumen. Se necesita un sistema de observación y análisis de carbono integrado a nivel mundial para mejorar la comprensión fundamental del ciclo global del carbono, para mejorar nuestra capacidad de proyectar cambios futuros y para verificar la efectividad de las políticas destinadas a reducir las emisiones de gases de efecto invernadero y aumentar el secuestro de carbono. Construir un sistema integrado de observación de carbono requiere avances transformacionales desde el marco exploratorio escaso existente hacia un sistema denso, robusto y sostenido en todos los componentes: las emisiones antropogénicas, la atmósfera, el océano y la biosfera terrestre. El objetivo de este estudio es identificar el estado actual de las emisiones de carbono y las necesidades de un sistema global integrado de emisiones de carbono que pueda construirse en la próxima década. Una conclusión clave es la expansión sustancial (en varios órdenes de magnitud) de las redes de observación terrestres necesarias para alcanzar la alta resolución espacial para los flujos de CO2 y CH4, y para las reservas de carbono para abordar los objetivos relevantes para las políticas y atribuir los cambios de flujo a los procesos subyacentes en cada región. Para establecer diagnósticos de flujo y stock en áreas remotas como los océanos del sur, los bosques tropicales y el Ártico, las observaciones in situ deberán complementarse con mediciones de teledetección. La teledetección ofrece la ventaja de una cobertura espacial densa y una revisión frecuente. Un desafío clave es llevar las mediciones de teledetección a un nivel de consistencia y precisión a largo plazo para que puedan combinarse de manera eficiente en modelos para reducir las incertidumbres, en sinergia con los datos basados en tierra. Traer restricciones observacionales estrictas sobre las emisiones de combustibles fósiles y el cambio en el uso de la tierra será el mayor desafío para el despliegue de un sistema integrado de observación de carbono relevante para las políticas. Esto requerirá datos in situ y teledetectados con una resolución y densidad mucho más altas que las que se logran actualmente para los flujos naturales, aunque en una pequeña superficie de tierra (ciudades, sitios industriales, centrales eléctricas), así como la inclusión de mediciones indirectas de CO2 de combustibles fósiles, como el radiocarbono en CO2 y los trazadores de combustión de combustibles de carbono. Además, un sistema de monitoreo de carbono relevante para las políticas también debe proporcionar mecanismos para conciliar las estimaciones regionales de flujo de arriba hacia abajo (basadas en la atmósfera) y de abajo hacia arriba (basadas en la superficie) en toda la gama de escalas espaciales y temporales relevantes para las políticas de mitigación. El éxito del sistema dependerá de los compromisos a largo plazo con el monitoreo, de una mejor colaboración internacional para llenar los vacíos en las observaciones actuales, de esfuerzos sostenidos para mejorar el acceso a los diferentes flujos de datos y hacer que las bases de datos sean interoperables, y de la calibración de cada componente del sistema a escalas internacionales acordadas. Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales. الخلاصة. هناك حاجة إلى نظام متكامل عالميًا لمراقبة الكربون وتحليله لتحسين الفهم الأساسي لدورة الكربون العالمية، وتحسين قدرتنا على توقع التغييرات المستقبلية، والتحقق من فعالية السياسات التي تهدف إلى الحد من انبعاثات غازات الدفيئة وزيادة عزل الكربون. يتطلب بناء نظام متكامل لمراقبة الكربون تقدمًا تحويليًا من الإطار الاستكشافي المتناثر الحالي نحو نظام كثيف وقوي ومستدام في جميع المكونات: الانبعاثات البشرية المنشأ والغلاف الجوي والمحيطات والمحيط الحيوي الأرضي. الهدف من هذه الدراسة هو تحديد الوضع الحالي لملاحظات الكربون والاحتياجات لنظام عالمي متكامل لمراقبة الكربون يمكن بناؤه في العقد المقبل. الاستنتاج الرئيسي هو التوسع الكبير (بعدة مرات من حيث الحجم) لشبكات المراقبة الأرضية المطلوبة للوصول إلى الاستبانة المكانية العالية لتدفقات ثاني أكسيد الكربون والميثان، ولمخزونات الكربون لمعالجة الأهداف ذات الصلة بالسياسات، وعزو تغييرات التدفق إلى العمليات الأساسية في كل منطقة. من أجل إنشاء تشخيصات التدفق والأرصدة في المناطق النائية مثل المحيطات الجنوبية والغابات الاستوائية والقطب الشمالي، يجب استكمال الملاحظات في الموقع بقياسات الاستشعار عن بعد. يوفر الاستشعار عن بعد ميزة التغطية المكانية الكثيفة وإعادة الزيارة المتكررة. ويتمثل أحد التحديات الرئيسية في الوصول بقياسات الاستشعار عن بعد إلى مستوى من الاتساق والدقة على المدى الطويل بحيث يمكن دمجها بكفاءة في نماذج للحد من أوجه عدم اليقين، بالتآزر مع البيانات الأرضية. سيكون فرض قيود صارمة على مراقبة الوقود الأحفوري وانبعاثات تغير استخدام الأراضي هو التحدي الأكبر أمام نشر نظام متكامل لمراقبة الكربون ذي صلة بالسياسات. وسيتطلب ذلك بيانات في الموقع ومستشعرة عن بعد بدقة وكثافة أعلى بكثير مما هو متحقق حاليًا للتدفقات الطبيعية، على الرغم من أنها على مساحة أرض صغيرة (المدن والمواقع الصناعية ومحطات الطاقة)، بالإضافة إلى تضمين قياسات وكيل ثاني أكسيد الكربون للوقود الأحفوري مثل الكربون المشع في ثاني أكسيد الكربون وتتبع احتراق الوقود الكربوني. بالإضافة إلى ذلك، يجب أن يوفر نظام رصد الكربون ذي الصلة بالسياسة أيضًا آليات للتوفيق بين تقديرات التدفق الإقليمية من أعلى إلى أسفل (القائمة على الغلاف الجوي) ومن أسفل إلى أعلى (السطحية) عبر نطاق المقاييس المكانية والزمنية ذات الصلة بسياسات التخفيف. سيعتمد نجاح النظام على الالتزامات طويلة الأجل بالرصد، وعلى تحسين التعاون الدولي لسد الثغرات في الملاحظات الحالية، وعلى الجهود المستمرة لتحسين الوصول إلى تدفقات البيانات المختلفة وجعل قواعد البيانات قابلة للتشغيل المتبادل، وعلى معايرة كل مكون من مكونات النظام وفقًا للنطاقات الدولية المتفق عليها.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Philippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; +54 Authors

    Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/bgd-10...
    Article . 2013 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.biogeosciences.net...
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Research . 2013
    License: CC BY
    https://dx.doi.org/10.60692/98...
    Other literature type . 2014
    Data sources: Datacite
    https://dx.doi.org/10.60692/x7...
    Other literature type . 2014
    Data sources: Datacite
    Research Collection
    Research . 2013
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    9
    citations9
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/bgd-10...
      Article . 2013 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://www.biogeosciences.net...
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Research . 2013
      License: CC BY
      https://dx.doi.org/10.60692/98...
      Other literature type . 2014
      Data sources: Datacite
      https://dx.doi.org/10.60692/x7...
      Other literature type . 2014
      Data sources: Datacite
      Research Collection
      Research . 2013
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Philippe Ciais; Han Dolman; Antonio Bombelli; Riley Duren; +53 Authors

    Résumé. Un système d'observation et d'analyse du carbone intégré à l'échelle mondiale est nécessaire pour améliorer la compréhension fondamentale du cycle mondial du carbone, pour améliorer notre capacité à projeter les changements futurs et pour vérifier l'efficacité des politiques visant à réduire les émissions de gaz à effet de serre et à augmenter la séquestration du carbone. La construction d'un système intégré d'observation du carbone nécessite des avancées transformationnelles du cadre exploratoire clairsemé existant vers un système dense, robuste et durable dans toutes ses composantes : les émissions anthropiques, l'atmosphère, l'océan et la biosphère terrestre. L'objectif de cette étude est d'identifier l'état actuel des observations de carbone et les besoins d'un système mondial intégré d'observation du carbone qui peut être construit au cours de la prochaine décennie. Une conclusion clé est l'expansion substantielle (de plusieurs ordres de grandeur) des réseaux d'observation au sol nécessaires pour atteindre la haute résolution spatiale pour les flux de CO2 et de CH4 et pour les stocks de carbone afin de répondre aux objectifs politiques pertinents et d'attribuer les changements de flux aux processus sous-jacents dans chaque région. Afin d'établir des diagnostics de flux et de stocks sur des zones éloignées telles que les océans du sud, les forêts tropicales et l'Arctique, les observations in situ devront être complétées par des mesures de télédétection. La télédétection offre l'avantage d'une couverture spatiale dense et de revisites fréquentes. Un défi clé consiste à amener les mesures de télédétection à un niveau de cohérence et de précision à long terme afin qu'elles puissent être efficacement combinées dans des modèles pour réduire les incertitudes, en synergie avec les données au sol. Apporter des contraintes d'observation strictes sur les émissions de combustibles fossiles et de changement d'affectation des terres sera le plus grand défi pour le déploiement d'un système intégré d'observation du carbone pertinent pour les politiques. Cela nécessitera des données in situ et de télédétection à une résolution et une densité beaucoup plus élevées que celles actuellement atteintes pour les flux naturels, bien que sur une petite superficie (villes, sites industriels, centrales électriques), ainsi que l'inclusion de mesures indirectes de CO2 de combustibles fossiles telles que le radiocarbone dans les traceurs de combustion de CO2 et de carbone. En outre, un système de surveillance du carbone pertinent pour les politiques devrait également fournir des mécanismes pour concilier les estimations des flux régionaux descendants (basés sur l'atmosphère) et ascendants (basés sur la surface) sur toute la gamme des échelles spatiales et temporelles pertinentes pour les politiques d'atténuation. Le succès du système reposera sur des engagements à long terme en matière de suivi, sur une meilleure collaboration internationale pour combler les lacunes dans les observations actuelles, sur des efforts soutenus pour améliorer l'accès aux différents flux de données et rendre les bases de données interopérables, et sur l'étalonnage de chaque composante du système à des échelles internationales convenues. Resumen. Se necesita un sistema de observación y análisis de carbono integrado a nivel mundial para mejorar la comprensión fundamental del ciclo global del carbono, para mejorar nuestra capacidad de proyectar cambios futuros y para verificar la efectividad de las políticas destinadas a reducir las emisiones de gases de efecto invernadero y aumentar el secuestro de carbono. Construir un sistema integrado de observación de carbono requiere avances transformacionales desde el marco exploratorio escaso existente hacia un sistema denso, robusto y sostenido en todos los componentes: las emisiones antropogénicas, la atmósfera, el océano y la biosfera terrestre. El objetivo de este estudio es identificar el estado actual de las emisiones de carbono y las necesidades de un sistema global integrado de emisiones de carbono que pueda construirse en la próxima década. Una conclusión clave es la expansión sustancial (en varios órdenes de magnitud) de las redes de observación terrestres necesarias para alcanzar la alta resolución espacial para los flujos de CO2 y CH4, y para las reservas de carbono para abordar los objetivos relevantes para las políticas y atribuir los cambios de flujo a los procesos subyacentes en cada región. Para establecer diagnósticos de flujo y stock en áreas remotas como los océanos del sur, los bosques tropicales y el Ártico, las observaciones in situ deberán complementarse con mediciones de teledetección. La teledetección ofrece la ventaja de una cobertura espacial densa y una revisión frecuente. Un desafío clave es llevar las mediciones de teledetección a un nivel de consistencia y precisión a largo plazo para que puedan combinarse de manera eficiente en modelos para reducir las incertidumbres, en sinergia con los datos basados en tierra. Traer restricciones observacionales estrictas sobre las emisiones de combustibles fósiles y el cambio en el uso de la tierra será el mayor desafío para el despliegue de un sistema integrado de observación de carbono relevante para las políticas. Esto requerirá datos in situ y teledetectados con una resolución y densidad mucho más altas que las que se logran actualmente para los flujos naturales, aunque en una pequeña superficie de tierra (ciudades, sitios industriales, centrales eléctricas), así como la inclusión de mediciones indirectas de CO2 de combustibles fósiles, como el radiocarbono en CO2 y los trazadores de combustión de combustibles de carbono. Además, un sistema de monitoreo de carbono relevante para las políticas también debe proporcionar mecanismos para conciliar las estimaciones regionales de flujo de arriba hacia abajo (basadas en la atmósfera) y de abajo hacia arriba (basadas en la superficie) en toda la gama de escalas espaciales y temporales relevantes para las políticas de mitigación. El éxito del sistema dependerá de los compromisos a largo plazo con el monitoreo, de una mejor colaboración internacional para llenar los vacíos en las observaciones actuales, de esfuerzos sostenidos para mejorar el acceso a los diferentes flujos de datos y hacer que las bases de datos sean interoperables, y de la calibración de cada componente del sistema a escalas internacionales acordadas. Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales. الخلاصة. هناك حاجة إلى نظام متكامل عالميًا لمراقبة الكربون وتحليله لتحسين الفهم الأساسي لدورة الكربون العالمية، وتحسين قدرتنا على توقع التغييرات المستقبلية، والتحقق من فعالية السياسات التي تهدف إلى الحد من انبعاثات غازات الدفيئة وزيادة عزل الكربون. يتطلب بناء نظام متكامل لمراقبة الكربون تقدمًا تحويليًا من الإطار الاستكشافي المتناثر الحالي نحو نظام كثيف وقوي ومستدام في جميع المكونات: الانبعاثات البشرية المنشأ والغلاف الجوي والمحيطات والمحيط الحيوي الأرضي. الهدف من هذه الدراسة هو تحديد الوضع الحالي لملاحظات الكربون والاحتياجات لنظام عالمي متكامل لمراقبة الكربون يمكن بناؤه في العقد المقبل. الاستنتاج الرئيسي هو التوسع الكبير (بعدة مرات من حيث الحجم) لشبكات المراقبة الأرضية المطلوبة للوصول إلى الاستبانة المكانية العالية لتدفقات ثاني أكسيد الكربون والميثان، ولمخزونات الكربون لمعالجة الأهداف ذات الصلة بالسياسات، وعزو تغييرات التدفق إلى العمليات الأساسية في كل منطقة. من أجل إنشاء تشخيصات التدفق والأرصدة في المناطق النائية مثل المحيطات الجنوبية والغابات الاستوائية والقطب الشمالي، يجب استكمال الملاحظات في الموقع بقياسات الاستشعار عن بعد. يوفر الاستشعار عن بعد ميزة التغطية المكانية الكثيفة وإعادة الزيارة المتكررة. ويتمثل أحد التحديات الرئيسية في الوصول بقياسات الاستشعار عن بعد إلى مستوى من الاتساق والدقة على المدى الطويل بحيث يمكن دمجها بكفاءة في نماذج للحد من أوجه عدم اليقين، بالتآزر مع البيانات الأرضية. سيكون فرض قيود صارمة على مراقبة الوقود الأحفوري وانبعاثات تغير استخدام الأراضي هو التحدي الأكبر أمام نشر نظام متكامل لمراقبة الكربون ذي صلة بالسياسات. وسيتطلب ذلك بيانات في الموقع ومستشعرة عن بعد بدقة وكثافة أعلى بكثير مما هو متحقق حاليًا للتدفقات الطبيعية، على الرغم من أنها على مساحة أرض صغيرة (المدن والمواقع الصناعية ومحطات الطاقة)، بالإضافة إلى تضمين قياسات وكيل ثاني أكسيد الكربون للوقود الأحفوري مثل الكربون المشع في ثاني أكسيد الكربون وتتبع احتراق الوقود الكربوني. بالإضافة إلى ذلك، يجب أن يوفر نظام رصد الكربون ذي الصلة بالسياسة أيضًا آليات للتوفيق بين تقديرات التدفق الإقليمية من أعلى إلى أسفل (القائمة على الغلاف الجوي) ومن أسفل إلى أعلى (السطحية) عبر نطاق المقاييس المكانية والزمنية ذات الصلة بسياسات التخفيف. سيعتمد نجاح النظام على الالتزامات طويلة الأجل بالرصد، وعلى تحسين التعاون الدولي لسد الثغرات في الملاحظات الحالية، وعلى الجهود المستمرة لتحسين الوصول إلى تدفقات البيانات المختلفة وجعل قواعد البيانات قابلة للتشغيل المتبادل، وعلى معايرة كل مكون من مكونات النظام وفقًا للنطاقات الدولية المتفق عليها.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph