Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Vladimir Z. Gjorgievski;
    Vladimir Z. Gjorgievski
    ORCID
    Harvested from ORCID Public Data File

    Vladimir Z. Gjorgievski in OpenAIRE
    Natasa Markovska; orcid Tomislav Pukšec;
    Tomislav Pukšec
    ORCID
    Harvested from ORCID Public Data File

    Tomislav Pukšec in OpenAIRE
    Neven Duić; +1 Authors

    Abstract This paper is an editorial for the virtual special issue (VSI) of Renewable and Sustainable Energy Reviews (RSER) dedicated to the 14th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES 2019) held from October 1, 2019 to October 6, 2019 in Dubrovnik. The VSI published both high quality review papers and original research articles presented at SDEWES 2019 that were of relevance to RSER. A total of 38 articles from the SDEWES 2019 were invited by the guest editors for this VSI. After a scrutinizing peer review process, 28 articles were accepted and published. These articles fall into three broad categories, dealing with smart energy communities, bioenergy and solutions for sectors that are difficult to decarbonize, and produce knowledge relevant to a number of Sustainable Development Goals (SDGs). This editorial discusses the contributions of the articles relevant for expanding the knowledge on the use of demand side flexibility, advancing the three visions of the bioeconomy, moving forward on the difficult challenges for a sustainable energy system and developing effective tools and guidelines for policy makers. Also, the editorial identifies synergies and trade-offs with a number of SDGs, confirming that the generated knowledge is a valuable support to the 2030 Agenda for Sustainable Development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Vladimir Z. Gjorgievski;
    Vladimir Z. Gjorgievski
    ORCID
    Harvested from ORCID Public Data File

    Vladimir Z. Gjorgievski in OpenAIRE
    Emilija Mihajloska; Alajdin Abazi; orcid bw Natasha Markovska;
    Natasha Markovska
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Natasha Markovska in OpenAIRE

    Since 2015, the intended climate actions of the Paris Agreement signatories have been reported as nationally determined contributions (NDC). These climate actions are fully aligned with the 13th Sustainable Development Goal (SDG) which calls for urgent action to combat climate change. The same, however, cannot be said for their relation to the other 16 SDGs of the 2030 Agenda for Sustainable Development, since climate action can either enhance or compromise the prospects for SDG implementation. In light of this challenge, this paper proposes a simple method for quantifying the synergies and trade-offs between national climate actions and the SDGs. The method, referred to as Q-SCAN, makes use of a seven-step scale and the SDG Climate Action Nexus tool. The effectiveness of the method has been demonstrated on a case study of North Macedonia, a non-Annex I, Western Balkan country with a coal-intensive energy system. Based on the experience in the preparation of the country’s enhanced NDC, the paper elaborates how the method can be used to contribute to the alignment of the national climate actions with the SDGs and how it can be used to improve stakeholder engagement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Natasa Markovska; Alajdin Abazi; orcid Vladimir Gjorgievski;
    Vladimir Gjorgievski
    ORCID
    Harvested from ORCID Public Data File

    Vladimir Gjorgievski in OpenAIRE
    Neven Duić;

    Abstract This paper provides a systematic review of 34 large-scale projects of power-to-heat demand response. The projects have been classified in terms of location, size, technical implementation and objective. The chronological ordering of the reviewed projects enables key takeaways to be drawn considering other developments in the energy sector, such as its restructuring and the emergence of competing flexibility options. The presented approach provides renewed insight to the debate on power-to-heat demand response diffusion. Historically, power-to-heat demand response has been used because of its wide availability on the demand side. Within utility programs, it has mostly been used to deal with infrastructure capacity limitations. This is still a major driver for power-to-heat demand response today. To address the challenges that come with the integration of renewable energy sources, more recent research projects have focused on exploring its capability to provide real-time balancing and frequency response at a smaller scale. The literature review suggests that the period of energy sector restructuring introduced uncertainty to energy companies regarding power-to-heat demand response and thus influenced its use. This period is now superseded by developments focused on electricity markets that are open to the demand side. Considering the flexibility requirement of the future energy system, new opportunities arise for power-to-heat demand response. Based on a critical analysis of the technical and regulatory changes, this paper makes the claim that the economic and policy frameworks have had a much more significant effect on the varying diffusion of power-to-heat demand response than the effect of the control and information technologies. In that sense, market rules should be carefully tailored so as to unlock the flexibility not only of power-to-heat demand response, but also of other flexibility resources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    59
    citations59
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bodan Velkovski;
    Bodan Velkovski
    ORCID
    Harvested from ORCID Public Data File

    Bodan Velkovski in OpenAIRE
    orcid Vladimir Z. Gjorgievski;
    Vladimir Z. Gjorgievski
    ORCID
    Harvested from ORCID Public Data File

    Vladimir Z. Gjorgievski in OpenAIRE
    Blagoja Markovski; orcid Snezana Cundeva;
    Snezana Cundeva
    ORCID
    Harvested from ORCID Public Data File

    Snezana Cundeva in OpenAIRE
    +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Vladimir Gjorgievski;
    Vladimir Gjorgievski
    ORCID
    Harvested from ORCID Public Data File

    Vladimir Gjorgievski in OpenAIRE
    George E. Georghiou; orcid Snezana Cundeva;
    Snezana Cundeva
    ORCID
    Harvested from ORCID Public Data File

    Snezana Cundeva in OpenAIRE

    Abstract Due to the potential for deploying distributed generation, improving energy efficiency and adopting sustainable energy-related practices, consumers provide significant value in the energy sector transformation. If their interests and goals are similar, they can group together and form energy communities. Energy communities enable consumers to jointly pursue their individual and collective economic, environmental and social goals, while simultaneously contributing to the decarbonisation of the energy system. Considering the growing interest in this field, this paper aims to enhance the understanding of the social arrangements, the technical designs and the impacts of energy communities. The social arrangements of energy communities are discussed in relation to the different actors, their roles and interactions. Then, the paper reviews the technical aspects of designing various local energy systems, while taking into account the goals of energy community members and outside actors. The reviewed literature is benchmarked with respect to the methods, modelling objectives and the constraints used in the design process. Finally, the paper quantifies the economic, environmental, technical and social impacts of energy communities, reviews the numerical indicators used to quantify these impacts and provides a critical discussion of the findings. Based on the findings, future research directions are highlighted.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    222
    citations222
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph