- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Chengjie Ren; Zhenghu Zhou; Manuel Delgado-Baquerizo; Felipe Bastida; Fazhu Zhao; Yuanhe Yang; Shuohong Zhang; Jieying Wang; Chao Zhang; Xinhui Han; Jun Wang; Gaihe Yang; Gehong Wei;AbstractUnderstanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon–climate feedback. We used the18O-H2O tracer method to quantify CUE and CUETalong a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET(CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET(CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50593-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 49 Powered bymore_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50593-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018Publisher:Copernicus GmbH Jianrong Wu; Xinhui Han; Yi Zhou; Peng Yue; X. Wang; Jin Lu; Weiguo Jiang; J. Li; Hong Tang; F. Wang; X. Li; Jinlong Fan;Abstract. The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of “Earth Observation and Navigation” of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesOther literature type . 2018Data sources: CopernicusThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-1879-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesOther literature type . 2018Data sources: CopernicusThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-1879-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Wiley Chengjie Ren; Fei Mo; Zhenghu Zhou; Felipe Bastida; Manuel Delgado‐Baquerizo; Jieying Wang; Xinyi Zhang; Yiqi Luo; Timothy J. Griffis; Xinhui Han; Gehong Wei; Jun Wang; Zekun Zhong; Yongzhong Feng; Guangxin Ren; Xiaojiao Wang; Kailiang Yu; Fazhu Zhao; Gaihe Yang; Fenghui Yuan;doi: 10.1111/geb.13524
handle: 10261/271403 , 1959.7/uws:76974
AbstractAimFresh carbon (C) inputs to the soil can have important consequences for the decomposition rates of soil organic matter (priming effect), thereby impacting the delicate global C balance at the soil–atmosphere interface. Yet, the environmental factors that control soil priming effect intensity remain poorly understood at a global scale.LocationGlobal.Time period1980–2020.Major taxa studiedSoil priming effect intensity.MethodsWe conducted a global dataset of CO2 effluxes in 711 pairwise soils with 13C or 14C simple C sources inputs and without C inputs from incubation experiments in which isotope‐labelled C was used to quantify fresh C‐induced rather than exudate‐induced priming.ResultsSoil priming effect intensity is predominantly positive. Soil texture and C content were identified as the most important factors associated with priming effects, with sandy soils from tropical and mid‐latitudes supporting the highest soil priming effect intensity, and soils with greater C content and fine textures from high latitudes maintaining the lowest soil priming effects. The negative association between C content and soil priming effect intensity was also indirectly driven by changing mean annual temperature, net primary productivity, and fungi : bacteria ratio. Using this information, we generated a global map of soil priming effect intensity, and found that the priming was lower at high latitudes and higher at lower latitudes.Main conclusionsGlobal patterns of soil priming effect intensity can be predicted using environmental data, with soil texture and C content playing a predominant role in explaining in priming effects. These effects were also indirectly driven by climate, vegetation and soil microbial properties. We present the first global atlas of soil priming effect intensity and advance our knowledge on the potential mechanisms underlying soil priming effect intensity, which are integral to improving the climate change and soil C dynamics components of Earth System models.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 129 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 SpainPublisher:Springer Science and Business Media LLC Chengjie Ren; Zhenghu Zhou; Manuel Delgado-Baquerizo; Felipe Bastida; Fazhu Zhao; Yuanhe Yang; Shuohong Zhang; Jieying Wang; Chao Zhang; Xinhui Han; Jun Wang; Gaihe Yang; Gehong Wei;AbstractUnderstanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon–climate feedback. We used the18O-H2O tracer method to quantify CUE and CUETalong a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET(CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET(CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.
Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50593-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 49 Powered bymore_vert Nature Communication... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50593-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018Publisher:Copernicus GmbH Jianrong Wu; Xinhui Han; Yi Zhou; Peng Yue; X. Wang; Jin Lu; Weiguo Jiang; J. Li; Hong Tang; F. Wang; X. Li; Jinlong Fan;Abstract. The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of “Earth Observation and Navigation” of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.
The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesOther literature type . 2018Data sources: CopernicusThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-1879-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The International Ar... arrow_drop_down The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticleLicense: CC BYData sources: UnpayWallThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesOther literature type . 2018Data sources: CopernicusThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesArticle . 2018Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/isprs-archives-xlii-3-1879-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Wiley Chengjie Ren; Fei Mo; Zhenghu Zhou; Felipe Bastida; Manuel Delgado‐Baquerizo; Jieying Wang; Xinyi Zhang; Yiqi Luo; Timothy J. Griffis; Xinhui Han; Gehong Wei; Jun Wang; Zekun Zhong; Yongzhong Feng; Guangxin Ren; Xiaojiao Wang; Kailiang Yu; Fazhu Zhao; Gaihe Yang; Fenghui Yuan;doi: 10.1111/geb.13524
handle: 10261/271403 , 1959.7/uws:76974
AbstractAimFresh carbon (C) inputs to the soil can have important consequences for the decomposition rates of soil organic matter (priming effect), thereby impacting the delicate global C balance at the soil–atmosphere interface. Yet, the environmental factors that control soil priming effect intensity remain poorly understood at a global scale.LocationGlobal.Time period1980–2020.Major taxa studiedSoil priming effect intensity.MethodsWe conducted a global dataset of CO2 effluxes in 711 pairwise soils with 13C or 14C simple C sources inputs and without C inputs from incubation experiments in which isotope‐labelled C was used to quantify fresh C‐induced rather than exudate‐induced priming.ResultsSoil priming effect intensity is predominantly positive. Soil texture and C content were identified as the most important factors associated with priming effects, with sandy soils from tropical and mid‐latitudes supporting the highest soil priming effect intensity, and soils with greater C content and fine textures from high latitudes maintaining the lowest soil priming effects. The negative association between C content and soil priming effect intensity was also indirectly driven by changing mean annual temperature, net primary productivity, and fungi : bacteria ratio. Using this information, we generated a global map of soil priming effect intensity, and found that the priming was lower at high latitudes and higher at lower latitudes.Main conclusionsGlobal patterns of soil priming effect intensity can be predicted using environmental data, with soil texture and C content playing a predominant role in explaining in priming effects. These effects were also indirectly driven by climate, vegetation and soil microbial properties. We present the first global atlas of soil priming effect intensity and advance our knowledge on the potential mechanisms underlying soil priming effect intensity, which are integral to improving the climate change and soil C dynamics components of Earth System models.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 129 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu