- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Qinwen Li; Yafeng Lu; Yukuan Wang; Pei Xu;doi: 10.3390/su11113199
Risk assessment lays a foundation for disaster risk reduction management, especially in relation to climate change. Intensified extreme weather and climate events driven by climate change may increase related disaster susceptibility. This may interact with exposed and vulnerable socioeconomic systems to aggravate the impacts and impede progress towards regional development. In this study, debris flow risk under climate change was assessed by an integrated debris flow mechanism model and an inclusive socioeconomic status evaluation. We implemented the method for a debris flow-prone area in the eastern part of the Qinghai-Tibet Plateau, China. Based on the analysis of three general circulation models (GCMs)—Beijing Climate Center Climate System Model version 1 (BCC_CSM), model for Interdisciplinary Research on Climate- Earth System, version 5 (MIROC5, and the Community Climate System Model version 4 (CCSM4)—the water–soil process model was applied to assess debris flow susceptibility. For the vulnerability evaluation, an index system established from the categories of bearing elements was analyzed by principle component analysis (PCA) methods. Our results showed that 432 to 1106 watersheds (accounting for 23% to 52% of the study area) were identified as debris-flow watersheds, although extreme rainfall would occur in most of the area from 2007 to 2060. The distributions of debris flow watersheds were concentrated in the north and transition zones of the study area. Additionally, the result of the index and PCA suggested that most areas had relatively low socioeconomic scores and such areas were considered as high-vulnerability human systems (accounts for 91%). Further analysis found that population density, road density, and gross domestic production made great contributions to vulnerability reduction. For practical mitigation strategies, we suggested that the enhancement of road density may be the most efficient risk reduction strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11113199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11113199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Zhengyang Li; Yukuan Wang; Yafeng Lu; Shravan Kumar Ghimire;doi: 10.3390/en16155801
The development of the tertiary industry is of great significance for promoting industrial structure, optimizing and upgrading it, and achieving regional energy conservation and emission reduction goals. This study adopts a quantitative method to analyze the spatio-temporal pattern of carbon emissions from China’s tertiary industry from 2004 to 2019. In order to analyze emissions from aspects such as energy structure, energy intensity, energy carrying capacity, industrial structure, level of industrial development, income level, consumption capacity, energy consumption intensity, and population size, this study establishes a hybrid factor decomposition model called the “energy-industry-consumption” research framework. The study shows that carbon emissions from China’s tertiary industry have been increasing year by year from 2004 to 2019, with a growth rate of 353.10%. Transportation is the largest contributor to the increase in carbon emissions from China’s tertiary industry. The carbon emissions from the tertiary industry in each province show four types: high-speed growth, low-speed growth, fluctuating growth, and stable growth. During the study period, carbon emissions produce a spatial heterogeneity with the highest emissions in the south and lowest in the northwestern part of China. The spatial pattern of per capita carbon emissions is not significant. Guangdong has the highest carbon emissions, and Shanghai and Beijing have higher per capita carbon emissions. Industrial factors and consumption factors have a positive effect on carbon emissions in China’s tertiary industry, while energy factors have a negative effect. The leading factor of carbon emissions in China’s tertiary industry has gradually shifted from energy to industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yuxin Zhang; Juying Sun; Yafeng Lu; Xueqian Song;doi: 10.3390/land11071084
Understanding vegetation changes and their driving forces in global alpine areas is critical in the context of climate change. We aimed to reveal the changing trend in global alpine vegetation from 1981 to 2015 using the least squares regression method and Mann-Kendall (MK) test. The area-of-influence dominated by anthropogenic activity and natural factors was determined in an area with significant vegetation change by residual analysis; the primary driving force of vegetation change in the area-of-influence dominated by natural factors was identified using the partial correlation method. The results showed that (1) the vegetation in the global alpine area exhibited a browning trend from 1981 to 2015 on the annual scale; however, a greening trend was observed from May to July on the month scale. (2) The influence of natural factors was greater than that of anthropogenic activities, and the positive impact of natural factors was greater than the negative impact. (3) Among the factors that were often considered as the main natural factors, the contribution of albedo to significant changes in vegetation were greater than that of temperature, precipitation, soil moisture, and sunshine duration. This study provides a scientific basis for the protection of vegetation and sustainable development in alpine regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhengyang Li; Yafeng Lu; Yukuan Wang; Jia Liu;doi: 10.3390/su14105829
Maintaining and improving the soil conservation function of an ecosystem is of positive significance to the sustainable and stable development of that ecosystem. We used the RUSLE model to evaluate the soil conservation function of the Qinling-Daba Mountains from 1982, 1995, 2005, and 2015 in order to analyze the spatio-temporal evolution characteristics of soil conservation. Our conclusions are as follows: (1) During the study period, the amount of average actual soil erosion in the Qinling-Daba Mountains was 955.39 × 108 t, the amount of actual soil erosion fluctuated greatly from year after year, there were obvious spatial aggregation and temporal and spatial transfer phenomena, and there was serious soil nutrient loss in the east. (2) From 1982 to 2015, soil conservation in the Qinling-Daba Mountains increased by 27.75 × 108 t during fluctuations. The soil conservation was negatively correlated with elevation and slope, and was positively correlated with vegetation coverage. (3) The average soil conservation of forest ecosystems and farmland ecosystems accounts for 78.11% of the total soil conservation, but there are differences in the ways in which to achieve soil conservation function. The order for soil conservation function of different vegetation types is crops > shrub > broad-leaved forest > coniferous forest > grass > meadow > grassland > coniferous and broad-leaved mixed forest > alpine plant > swamp. (4) The average retention of N, P and K elements in soil were 75.57 × 104 t, 25.35 × 104 t and 737.28 × 104 t, respectively. The soil elements had the consistency of spatial difference in spatial distribution and were time scaled. The soil nutrient loss in the eastern region is serious. Shrubs, broadleaf forests and crops have the greatest effect on soil nutrient retention. Alpine plants retain the greatest amount of soil nutrients per unit area. Therefore, the establishment of reasonable soil conservation strategies and scientific vegetation interplanting measures will help to enhance the soil conservation function of the Qinling-Daba Mountains ecosystem and improve the ecosystem production capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Qinwen Li; Yafeng Lu; Yukuan Wang; Pei Xu;doi: 10.3390/su11113199
Risk assessment lays a foundation for disaster risk reduction management, especially in relation to climate change. Intensified extreme weather and climate events driven by climate change may increase related disaster susceptibility. This may interact with exposed and vulnerable socioeconomic systems to aggravate the impacts and impede progress towards regional development. In this study, debris flow risk under climate change was assessed by an integrated debris flow mechanism model and an inclusive socioeconomic status evaluation. We implemented the method for a debris flow-prone area in the eastern part of the Qinghai-Tibet Plateau, China. Based on the analysis of three general circulation models (GCMs)—Beijing Climate Center Climate System Model version 1 (BCC_CSM), model for Interdisciplinary Research on Climate- Earth System, version 5 (MIROC5, and the Community Climate System Model version 4 (CCSM4)—the water–soil process model was applied to assess debris flow susceptibility. For the vulnerability evaluation, an index system established from the categories of bearing elements was analyzed by principle component analysis (PCA) methods. Our results showed that 432 to 1106 watersheds (accounting for 23% to 52% of the study area) were identified as debris-flow watersheds, although extreme rainfall would occur in most of the area from 2007 to 2060. The distributions of debris flow watersheds were concentrated in the north and transition zones of the study area. Additionally, the result of the index and PCA suggested that most areas had relatively low socioeconomic scores and such areas were considered as high-vulnerability human systems (accounts for 91%). Further analysis found that population density, road density, and gross domestic production made great contributions to vulnerability reduction. For practical mitigation strategies, we suggested that the enhancement of road density may be the most efficient risk reduction strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11113199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11113199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Zhengyang Li; Yukuan Wang; Yafeng Lu; Shravan Kumar Ghimire;doi: 10.3390/en16155801
The development of the tertiary industry is of great significance for promoting industrial structure, optimizing and upgrading it, and achieving regional energy conservation and emission reduction goals. This study adopts a quantitative method to analyze the spatio-temporal pattern of carbon emissions from China’s tertiary industry from 2004 to 2019. In order to analyze emissions from aspects such as energy structure, energy intensity, energy carrying capacity, industrial structure, level of industrial development, income level, consumption capacity, energy consumption intensity, and population size, this study establishes a hybrid factor decomposition model called the “energy-industry-consumption” research framework. The study shows that carbon emissions from China’s tertiary industry have been increasing year by year from 2004 to 2019, with a growth rate of 353.10%. Transportation is the largest contributor to the increase in carbon emissions from China’s tertiary industry. The carbon emissions from the tertiary industry in each province show four types: high-speed growth, low-speed growth, fluctuating growth, and stable growth. During the study period, carbon emissions produce a spatial heterogeneity with the highest emissions in the south and lowest in the northwestern part of China. The spatial pattern of per capita carbon emissions is not significant. Guangdong has the highest carbon emissions, and Shanghai and Beijing have higher per capita carbon emissions. Industrial factors and consumption factors have a positive effect on carbon emissions in China’s tertiary industry, while energy factors have a negative effect. The leading factor of carbon emissions in China’s tertiary industry has gradually shifted from energy to industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yuxin Zhang; Juying Sun; Yafeng Lu; Xueqian Song;doi: 10.3390/land11071084
Understanding vegetation changes and their driving forces in global alpine areas is critical in the context of climate change. We aimed to reveal the changing trend in global alpine vegetation from 1981 to 2015 using the least squares regression method and Mann-Kendall (MK) test. The area-of-influence dominated by anthropogenic activity and natural factors was determined in an area with significant vegetation change by residual analysis; the primary driving force of vegetation change in the area-of-influence dominated by natural factors was identified using the partial correlation method. The results showed that (1) the vegetation in the global alpine area exhibited a browning trend from 1981 to 2015 on the annual scale; however, a greening trend was observed from May to July on the month scale. (2) The influence of natural factors was greater than that of anthropogenic activities, and the positive impact of natural factors was greater than the negative impact. (3) Among the factors that were often considered as the main natural factors, the contribution of albedo to significant changes in vegetation were greater than that of temperature, precipitation, soil moisture, and sunshine duration. This study provides a scientific basis for the protection of vegetation and sustainable development in alpine regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land11071084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhengyang Li; Yafeng Lu; Yukuan Wang; Jia Liu;doi: 10.3390/su14105829
Maintaining and improving the soil conservation function of an ecosystem is of positive significance to the sustainable and stable development of that ecosystem. We used the RUSLE model to evaluate the soil conservation function of the Qinling-Daba Mountains from 1982, 1995, 2005, and 2015 in order to analyze the spatio-temporal evolution characteristics of soil conservation. Our conclusions are as follows: (1) During the study period, the amount of average actual soil erosion in the Qinling-Daba Mountains was 955.39 × 108 t, the amount of actual soil erosion fluctuated greatly from year after year, there were obvious spatial aggregation and temporal and spatial transfer phenomena, and there was serious soil nutrient loss in the east. (2) From 1982 to 2015, soil conservation in the Qinling-Daba Mountains increased by 27.75 × 108 t during fluctuations. The soil conservation was negatively correlated with elevation and slope, and was positively correlated with vegetation coverage. (3) The average soil conservation of forest ecosystems and farmland ecosystems accounts for 78.11% of the total soil conservation, but there are differences in the ways in which to achieve soil conservation function. The order for soil conservation function of different vegetation types is crops > shrub > broad-leaved forest > coniferous forest > grass > meadow > grassland > coniferous and broad-leaved mixed forest > alpine plant > swamp. (4) The average retention of N, P and K elements in soil were 75.57 × 104 t, 25.35 × 104 t and 737.28 × 104 t, respectively. The soil elements had the consistency of spatial difference in spatial distribution and were time scaled. The soil nutrient loss in the eastern region is serious. Shrubs, broadleaf forests and crops have the greatest effect on soil nutrient retention. Alpine plants retain the greatest amount of soil nutrients per unit area. Therefore, the establishment of reasonable soil conservation strategies and scientific vegetation interplanting measures will help to enhance the soil conservation function of the Qinling-Daba Mountains ecosystem and improve the ecosystem production capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu