Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fernando Agulló-Rueda; Mercedes Gabás; Pilar Herrero; Angel R. Landa-Cánovas; +2 Authors

    Abstract Undoped and 2% Ga-doped ZnO films have been deposited by RF magnetron sputtering onto single crystal Si (1 0 0) substrates equivalent to the commercial Si solar cells. The same films were also grown on amorphous silica substrates to complete their characterization. The films have been characterized by X-ray diffraction, electrical and optical measurements, X-ray photoelectron spectroscopy, Raman microspectroscopy and scanning and high-resolution transmission electron microscopy. Films present a very good quality crystalline wurtzite structure with the c -axis perpendicular to the substrate, with continuity of the (0 0 0 2) planes along the whole film, as shown by transmission electron microscopy. The doped sample shows an increase of two orders of magnitude of the electrical conductivity, an optical transmittance bigger than 85% along the visible spectrum, a diminution of the grain size in the direction parallel to the substrate and a lower surface roughness. The Ga-cations act only as substitutional impurities, they are homogeneously distributed in the whole film, maintaining the wurtzite structure and increasing the carrier density. The formation of any spurious phase or segregation of Ga 2 O 3 clusters that can act as carrier traps can be discarded. The characterization results allow us to conclude that the doped film has improved electrical and optical properties with respect to the undoped one. Therefore, the Ga-doped films are very suitable candidates as transparent conducting electrodes for solar cells, displays and other photoelectronic devices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: M. E. Arroyo y de Dompablo; N. Biskup; José Luis Martínez; J. Morales; +1 Authors

    The magnetic properties of LiM0.5Mn1.5O4 (M=Ni and Cu) spinels, materials of interest as electrodes for Li-ion batteries, have been studied and interpreted with the help of the first-principles calculation method. The magnetic susceptibility of the Ni compound, that behaves virtually as stoichiometric normal spinel, is consistent with the well-established magnetic model of the spinel structure that leads to ferrimagnetism. However, the Cu spinel was oxygen deficient and showed significant divergences from this model. The ferromagnetic component of this spinel was dependent on the calcining temperature and was smaller to that predicted by the magnetic model. The special crystal structure of the spinel, namely, oxygen deficiency and increased occupancy of the tetrahedral sites by Cu ions, satisfactorily explains the more complex magnetic behavior observed, further supported by the results of the first-principles electronic structure computations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fernando Agulló-Rueda; Mercedes Gabás; Pilar Herrero; Angel R. Landa-Cánovas; +2 Authors

    Abstract Undoped and 2% Ga-doped ZnO films have been deposited by RF magnetron sputtering onto single crystal Si (1 0 0) substrates equivalent to the commercial Si solar cells. The same films were also grown on amorphous silica substrates to complete their characterization. The films have been characterized by X-ray diffraction, electrical and optical measurements, X-ray photoelectron spectroscopy, Raman microspectroscopy and scanning and high-resolution transmission electron microscopy. Films present a very good quality crystalline wurtzite structure with the c -axis perpendicular to the substrate, with continuity of the (0 0 0 2) planes along the whole film, as shown by transmission electron microscopy. The doped sample shows an increase of two orders of magnitude of the electrical conductivity, an optical transmittance bigger than 85% along the visible spectrum, a diminution of the grain size in the direction parallel to the substrate and a lower surface roughness. The Ga-cations act only as substitutional impurities, they are homogeneously distributed in the whole film, maintaining the wurtzite structure and increasing the carrier density. The formation of any spurious phase or segregation of Ga 2 O 3 clusters that can act as carrier traps can be discarded. The characterization results allow us to conclude that the doped film has improved electrical and optical properties with respect to the undoped one. Therefore, the Ga-doped films are very suitable candidates as transparent conducting electrodes for solar cells, displays and other photoelectronic devices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: M. E. Arroyo y de Dompablo; N. Biskup; José Luis Martínez; J. Morales; +1 Authors

    The magnetic properties of LiM0.5Mn1.5O4 (M=Ni and Cu) spinels, materials of interest as electrodes for Li-ion batteries, have been studied and interpreted with the help of the first-principles calculation method. The magnetic susceptibility of the Ni compound, that behaves virtually as stoichiometric normal spinel, is consistent with the well-established magnetic model of the spinel structure that leads to ferrimagnetism. However, the Cu spinel was oxygen deficient and showed significant divergences from this model. The ferromagnetic component of this spinel was dependent on the calcining temperature and was smaller to that predicted by the magnetic model. The special crystal structure of the spinel, namely, oxygen deficiency and increased occupancy of the tetrahedral sites by Cu ions, satisfactorily explains the more complex magnetic behavior observed, further supported by the results of the first-principles electronic structure computations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph