- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Frontiers Media SA Samiksha Singh; Madhulika Singh; Vijay Pratap Singh; Parul Parihar; Jitendra Kumar; Andrzej Bajguz; Rachana Singh; Sheo Mohan Prasad;Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.00515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 295 citations 295 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.00515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Alisha C. Fernandes; Usha Devi Muraleedharan; Jitendra Kumar; Bijoy Biswas; Bijoy Biswas; Thallada Bhaskar; Thallada Bhaskar;Abstract Sargassum tenerrimum has been used for the production of bio-oil by hydrothermal liquefaction in water sub-critical conditions at a temperature range of 260–300 °C for reaction time 15 min. Maximum bio-oil (16.3 wt%) was obtained at 280 °C and maximum conversion was observed (75.8 wt%) at 300 °C. The solid residue yields decreased continuously from 61.2 wt% to 24.2 wt% as the temperature increased from 260 to 300 °C. The liquid products obtained upon hydrothermal liquefaction were characterized with the help of 1H NMR, GC–MS and FT-IR techniques and bio-residue using FT-IR and XRD. Analysis of bio-oil showed that their components and functional structure of bio-oils were greatly distinguished and consisted of many compounds including phenols, ketones, aldehydes, acid, esters, alcohols, nitrogen-containing compounds, and hydrocarbons. From the GC–MS analysis it has been seen that, organic acid content in the bio-oils were decreased with the increasing temperature from 260 to 300 °C. The band at 1083 cm−1 only appeared in the absorption profile of S. tenerrimum feed, which could be C-O connected with hydroxyl groups and were dehydrated after liquefaction. All the bio-oils showed higher percentages of aliphatic protons in the spectral region from 0.5 to 3.0 ppm. The analysis of bio-residue obtained at various temperatures showed typical amorphous nature that indicated richness of carbon content in the residue.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.02.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.02.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Bhavya B. Krishna; Rawel Singh; Thallada Bhaskar; Thallada Bhaskar; Jitendra Kumar;pmid: 26350883
The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.08.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.08.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bhavya Balagurumurthy; Vartika Srivastava; null Vinit; Jitendra Kumar; Bijoy Biswas; Rawel Singh; Piyush Gupta; K.L.N. Shiva Kumar; Raghuvir Singh; Thallada Bhaskar;pmid: 25637279
Pyrolysis of rice straw has been carried out under hydrogen atmosphere at 300, 350, 400 and 450 °C and pressures of 1, 10, 20, 30 and 40 bar and in nitrogen atmosphere, experiments have been carried out at the same temperatures. It has been observed that the optimum process conditions for hydropyrolysis are 400 °C and 30 bar pressure and for slow pyrolysis, the optimum temperature is 400 °C. The bio-oil has been characterised using GC-MS, (1)H NMR and FT-IR and bio-char using FT-IR, SEM and XRD. The bio-oil yield under hydrogen pressure was observed to be 12.8 wt.% (400 °C and 30 bar) and yield under nitrogen atmosphere was found to be 31 wt.% (400 °C). From the product characterisation, it was found that the distribution of products is different for hydrogen and nitrogen environments due to differences in the decomposition reaction mechanism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Rajeev K. Sukumaran; Sabeela Beevi Ummalyma; Gaje Singh; Velayudhanpillai Prasannakumari Adarsh; +9 AuthorsRajeev K. Sukumaran; Sabeela Beevi Ummalyma; Gaje Singh; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mullepureddy; Ayushi Awasthi; Vaibhav Dhyani; Dinabandhu Sahoo; Anoop Puthiyamadam; Yenumula Sudhakara Reddy; Thallada Bhaskar; Thallada Bhaskar; Jitendra Kumar;pmid: 30959390
In the present work, the pyrolysis of para grass (PG) and phumdi (PH) biomass samples was conducted in the temperature range of 300-500 °C to obtain the optimum temperature for obtaining the maximum yield of bio-oil. Further, co-pyrolysis experiments of PH and PG were also conducted at the same optimized temperature and varied compositions to investigate the synergistic effect. It was observed during the co-pyrolysis, that the maximum bio-oil yield of 37.80 wt% was obtained at the mass ratio of 1:1. The GC-MS, FT-IR and 1H NMR analysis revealed that the bio-oils produced from all the processes were rich in functionalities. Phenolic compounds such as 2-methoxy-4-vinyl phenol, phenol, 2-methoxy, phenol 4-ethyl constituted a significant portion of bio-oils. The biochars obtained at the optimum pyrolytic conditions were analyzed by FT-IR and TOC analyzer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Narasimhan Ramkumar; Ana F. Miranda; Aidyn Mouradov; Anton James; Bijoy Biswas; Banwari Lal; Felicity A. Roddick; Thallada Bhaskar; Sanjukta Subudhi; Rawel Singh; Jitendra Kumar;The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae.The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH4-N, NO3-N, PO4-P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 103 L/ha-year, is close to that from corn stover (13.3 × 103 L/ha-year), but higher than from miscanthus (2.3 × 103 L/ha-year) and woody plants, such as willow (0.3 × 103 L/ha-year) and poplar (1.3 × 103 L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops.The high productivity, the ability to grow on wastewaters and unique chemical composition make Azolla species the most attractive, sustainable and universal feedstock for low cost, low energy demanding, near zero maintenance system for the production of a wide spectrum of renewable biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-016-0628-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-016-0628-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Thallada Bhaskar; Thallada Bhaskar; Rawel Singh; Bijoy Biswas; Jitendra Kumar; Yashasvi Bisht; Aishwarya Arun Kumar;pmid: 28347621
The influence of various solvents (H2O, CH3OH, and C2H5OH) on product distribution and nature of products during hydrothermal liquefaction of sargassum tenerrimum algae has been examined. Hydrothermal liquefaction was performed using H2O (260, 280 and 300°C) and organic solvents CH3OH and C2H5OH (280°C) for 15min. The use of organic solvents significantly increased the yield of bio-oil. In the case of liquefaction with CH3OH and C2H5OH, the bio-oil yield was 22.8 and 23.8wt.% respectively whereas the bio-oil yield was 16.33wt.% with H2O. GC-MS analysis of the liquid products indicated the presence of various organic compounds including aromatics, nitrogenated and oxygenated compounds and higher selectivity amount of ester compounds were observed in the presence of alcoholic solvents. NMR and FT-IR showed that present of solvents have an effect on the decomposition of sargassum tenerrimum algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.03.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.03.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Prabhat Kumar Srivastava; Sanjesh Tiwari; Anuradha Patel; Santwana Tiwari; Sheo Mohan Prasad; Jitendra Kumar;pmid: 29573725
The current study was undertaken to elucidate the impact of the herbicide pretilachlor (3 µg ml-1 and 6 µg ml-1) on cyanobacteria, Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 under three levels of photoacclimatization (suboptimum, 25 µmol photon m-2 s-1; optimum, 75 µmol photon m-2 s-1; and supra-optimum, 225 µmol photon m-2 s-1) by analyzing certain physiological (biomass accumulation, photosynthesis, Chl a fluorescence and respiration) and biochemical parameters (photosynthetic pigments‒ chlorophyll a, carotenoids and phycocyanin; reactive oxygen species‒ O2•¯, H2O2, lipid peroxidation; antioxidant system‒ superoxide dismutase, peroxidise, catalase and glutathione-S-transferase). The light conditioning played the most prominent role in deciding the extent of herbicide toxicity on both the tested cyanobacteria as the maximum toxicity was observed in suboptimum light acclimatized cyanobacterial cells corroborated by the least growth in the same cells. The impact of pretilachlor treatment on photosystem II photochemistry viz. φP0, Ѱ0, φE0, PIABS, ABS/RC, TR0/RC, ET0/RC and DI0/RC was also altered by light acclimatization. The percent rise in oxidative stress markers (SOR and H2O2) and consequent lipid peroxidation (MDA equivalents) were also highest in suboptimum light acclimatized cells exposed to pretilachlor which could not be prospered with compatible antioxidant performance. Conversely, supra-optimum light acclimatized cells of both the cyanobacteria was found to accelerate the activities of all the studied enzymes and thus able to counterbalance the pretilachlor toxicity and supported the healthier growth.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2018.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2018.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Sheo Mohan Prasad; Jitendra Kumar; Vijay Pratap Singh; Samiksha Singh;pmid: 25974366
In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Anoop Puthiyamadam; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mallapureddy; Anil Mathew; +6 AuthorsAnoop Puthiyamadam; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mallapureddy; Anil Mathew; Jitendra Kumar; Sudhakara Reddy Yenumala; Thallada Bhaskar; Sabeela Beevi Ummalyama; Dinabandhu Sahoo; Rajeev K Sukumaran;pmid: 31248726
Biorefineries typically use dry feedstock due to technical and logistic issues, but in unique cases where climatic conditions are unfavorable and where the biomass has to be processed without a holding time, wet processing might be advantageous. The present study evaluated the possibility of using the fresh (non-dried) mixed biomass harvested from Phumdis; which are floating vegetation unique to Loktak lake in Manipur, India, for bioethanol production. Pretreatment with dilute alkali (1.5% at 120 °C for 60 min) resulted in 36% lignin removal and an enhancement of cellulose content to 48% from 37%, and enzymatic hydrolysis released 25 g/L glucose. Fermentation of the hydrolysates was highly efficient at 95%, attained in 36 h and 80% in just 12 h. The new wet processing strategy could help in value addition of mixed phumdi biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.121633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.121633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Frontiers Media SA Samiksha Singh; Madhulika Singh; Vijay Pratap Singh; Parul Parihar; Jitendra Kumar; Andrzej Bajguz; Rachana Singh; Sheo Mohan Prasad;Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.00515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 295 citations 295 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.00515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Alisha C. Fernandes; Usha Devi Muraleedharan; Jitendra Kumar; Bijoy Biswas; Bijoy Biswas; Thallada Bhaskar; Thallada Bhaskar;Abstract Sargassum tenerrimum has been used for the production of bio-oil by hydrothermal liquefaction in water sub-critical conditions at a temperature range of 260–300 °C for reaction time 15 min. Maximum bio-oil (16.3 wt%) was obtained at 280 °C and maximum conversion was observed (75.8 wt%) at 300 °C. The solid residue yields decreased continuously from 61.2 wt% to 24.2 wt% as the temperature increased from 260 to 300 °C. The liquid products obtained upon hydrothermal liquefaction were characterized with the help of 1H NMR, GC–MS and FT-IR techniques and bio-residue using FT-IR and XRD. Analysis of bio-oil showed that their components and functional structure of bio-oils were greatly distinguished and consisted of many compounds including phenols, ketones, aldehydes, acid, esters, alcohols, nitrogen-containing compounds, and hydrocarbons. From the GC–MS analysis it has been seen that, organic acid content in the bio-oils were decreased with the increasing temperature from 260 to 300 °C. The band at 1083 cm−1 only appeared in the absorption profile of S. tenerrimum feed, which could be C-O connected with hydroxyl groups and were dehydrated after liquefaction. All the bio-oils showed higher percentages of aliphatic protons in the spectral region from 0.5 to 3.0 ppm. The analysis of bio-residue obtained at various temperatures showed typical amorphous nature that indicated richness of carbon content in the residue.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.02.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.02.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Bhavya B. Krishna; Rawel Singh; Thallada Bhaskar; Thallada Bhaskar; Jitendra Kumar;pmid: 26350883
The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.08.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.08.117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Bhavya Balagurumurthy; Vartika Srivastava; null Vinit; Jitendra Kumar; Bijoy Biswas; Rawel Singh; Piyush Gupta; K.L.N. Shiva Kumar; Raghuvir Singh; Thallada Bhaskar;pmid: 25637279
Pyrolysis of rice straw has been carried out under hydrogen atmosphere at 300, 350, 400 and 450 °C and pressures of 1, 10, 20, 30 and 40 bar and in nitrogen atmosphere, experiments have been carried out at the same temperatures. It has been observed that the optimum process conditions for hydropyrolysis are 400 °C and 30 bar pressure and for slow pyrolysis, the optimum temperature is 400 °C. The bio-oil has been characterised using GC-MS, (1)H NMR and FT-IR and bio-char using FT-IR, SEM and XRD. The bio-oil yield under hydrogen pressure was observed to be 12.8 wt.% (400 °C and 30 bar) and yield under nitrogen atmosphere was found to be 31 wt.% (400 °C). From the product characterisation, it was found that the distribution of products is different for hydrogen and nitrogen environments due to differences in the decomposition reaction mechanism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Rajeev K. Sukumaran; Sabeela Beevi Ummalyma; Gaje Singh; Velayudhanpillai Prasannakumari Adarsh; +9 AuthorsRajeev K. Sukumaran; Sabeela Beevi Ummalyma; Gaje Singh; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mullepureddy; Ayushi Awasthi; Vaibhav Dhyani; Dinabandhu Sahoo; Anoop Puthiyamadam; Yenumula Sudhakara Reddy; Thallada Bhaskar; Thallada Bhaskar; Jitendra Kumar;pmid: 30959390
In the present work, the pyrolysis of para grass (PG) and phumdi (PH) biomass samples was conducted in the temperature range of 300-500 °C to obtain the optimum temperature for obtaining the maximum yield of bio-oil. Further, co-pyrolysis experiments of PH and PG were also conducted at the same optimized temperature and varied compositions to investigate the synergistic effect. It was observed during the co-pyrolysis, that the maximum bio-oil yield of 37.80 wt% was obtained at the mass ratio of 1:1. The GC-MS, FT-IR and 1H NMR analysis revealed that the bio-oils produced from all the processes were rich in functionalities. Phenolic compounds such as 2-methoxy-4-vinyl phenol, phenol, 2-methoxy, phenol 4-ethyl constituted a significant portion of bio-oils. The biochars obtained at the optimum pyrolytic conditions were analyzed by FT-IR and TOC analyzer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Narasimhan Ramkumar; Ana F. Miranda; Aidyn Mouradov; Anton James; Bijoy Biswas; Banwari Lal; Felicity A. Roddick; Thallada Bhaskar; Sanjukta Subudhi; Rawel Singh; Jitendra Kumar;The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae.The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH4-N, NO3-N, PO4-P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 103 L/ha-year, is close to that from corn stover (13.3 × 103 L/ha-year), but higher than from miscanthus (2.3 × 103 L/ha-year) and woody plants, such as willow (0.3 × 103 L/ha-year) and poplar (1.3 × 103 L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops.The high productivity, the ability to grow on wastewaters and unique chemical composition make Azolla species the most attractive, sustainable and universal feedstock for low cost, low energy demanding, near zero maintenance system for the production of a wide spectrum of renewable biofuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-016-0628-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-016-0628-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Thallada Bhaskar; Thallada Bhaskar; Rawel Singh; Bijoy Biswas; Jitendra Kumar; Yashasvi Bisht; Aishwarya Arun Kumar;pmid: 28347621
The influence of various solvents (H2O, CH3OH, and C2H5OH) on product distribution and nature of products during hydrothermal liquefaction of sargassum tenerrimum algae has been examined. Hydrothermal liquefaction was performed using H2O (260, 280 and 300°C) and organic solvents CH3OH and C2H5OH (280°C) for 15min. The use of organic solvents significantly increased the yield of bio-oil. In the case of liquefaction with CH3OH and C2H5OH, the bio-oil yield was 22.8 and 23.8wt.% respectively whereas the bio-oil yield was 16.33wt.% with H2O. GC-MS analysis of the liquid products indicated the presence of various organic compounds including aromatics, nitrogenated and oxygenated compounds and higher selectivity amount of ester compounds were observed in the presence of alcoholic solvents. NMR and FT-IR showed that present of solvents have an effect on the decomposition of sargassum tenerrimum algae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.03.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.03.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Prabhat Kumar Srivastava; Sanjesh Tiwari; Anuradha Patel; Santwana Tiwari; Sheo Mohan Prasad; Jitendra Kumar;pmid: 29573725
The current study was undertaken to elucidate the impact of the herbicide pretilachlor (3 µg ml-1 and 6 µg ml-1) on cyanobacteria, Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 under three levels of photoacclimatization (suboptimum, 25 µmol photon m-2 s-1; optimum, 75 µmol photon m-2 s-1; and supra-optimum, 225 µmol photon m-2 s-1) by analyzing certain physiological (biomass accumulation, photosynthesis, Chl a fluorescence and respiration) and biochemical parameters (photosynthetic pigments‒ chlorophyll a, carotenoids and phycocyanin; reactive oxygen species‒ O2•¯, H2O2, lipid peroxidation; antioxidant system‒ superoxide dismutase, peroxidise, catalase and glutathione-S-transferase). The light conditioning played the most prominent role in deciding the extent of herbicide toxicity on both the tested cyanobacteria as the maximum toxicity was observed in suboptimum light acclimatized cyanobacterial cells corroborated by the least growth in the same cells. The impact of pretilachlor treatment on photosystem II photochemistry viz. φP0, Ѱ0, φE0, PIABS, ABS/RC, TR0/RC, ET0/RC and DI0/RC was also altered by light acclimatization. The percent rise in oxidative stress markers (SOR and H2O2) and consequent lipid peroxidation (MDA equivalents) were also highest in suboptimum light acclimatized cells exposed to pretilachlor which could not be prospered with compatible antioxidant performance. Conversely, supra-optimum light acclimatized cells of both the cyanobacteria was found to accelerate the activities of all the studied enzymes and thus able to counterbalance the pretilachlor toxicity and supported the healthier growth.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2018.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2018.03.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Sheo Mohan Prasad; Jitendra Kumar; Vijay Pratap Singh; Samiksha Singh;pmid: 25974366
In plants, hydrogen sulfide (H2S) is an emerging novel signaling molecule that is involved in growth regulation and abiotic stress responses. However, little is known about its role in the regulation of arsenate (As(V)) toxicity. Therefore, hydroponic experiments were conducted to investigate whether sodium hydrosulfide (NaHS; a source of H2S) is involved in the regulation of As(V) toxicity in pea seedlings. Results showed that As(V) caused decreases in growth, photosynthesis (measured as chlorophyll fluorescence) and nitrogen content, which was accompanied by the accumulation of As. As(V) treatment also reduced the activities of cysteine desulfhydrase and nitrate reductase, and contents of H2S and nitric oxide (NO). However, addition of NaHS ameliorated As(V) toxicity in pea seedlings, which coincided with the increased contents of H2S and NO. The cysteine level was higher under As(V) treatment in comparison to all other treatments (As-free; NaHS; As(V)+NaHS). The content of reactive oxygen species (ROS) and damage to lipids, proteins and membranes increased by As(V) while NaHS alleviated these effects. Enzymes of the ascorbate-glutathione cycle (AsA-GSH cycle) showed inhibition of their activities following As(V) treatment while their activities were increased by application of NaHS. The redox status of ascorbate and glutathione was disturbed by As(V) as indicated by a steep decline in their reduced/oxidized ratios. However, simultaneous NaHS application restored the redox status of the ascorbate and glutathione pools. The results of this study demonstrated that H2S and NO might both be involved in reducing the accumulation of As and triggering up-regulation of the AsA-GSH cycle to counterbalance ROS-mediated damage to macromolecules. Furthermore, the results suggest a crucial role of H2S in plant priming, and in particular for pea seedlings in mitigating As(V) stress.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Anoop Puthiyamadam; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mallapureddy; Anil Mathew; +6 AuthorsAnoop Puthiyamadam; Velayudhanpillai Prasannakumari Adarsh; Kiran Kumar Mallapureddy; Anil Mathew; Jitendra Kumar; Sudhakara Reddy Yenumala; Thallada Bhaskar; Sabeela Beevi Ummalyama; Dinabandhu Sahoo; Rajeev K Sukumaran;pmid: 31248726
Biorefineries typically use dry feedstock due to technical and logistic issues, but in unique cases where climatic conditions are unfavorable and where the biomass has to be processed without a holding time, wet processing might be advantageous. The present study evaluated the possibility of using the fresh (non-dried) mixed biomass harvested from Phumdis; which are floating vegetation unique to Loktak lake in Manipur, India, for bioethanol production. Pretreatment with dilute alkali (1.5% at 120 °C for 60 min) resulted in 36% lignin removal and an enhancement of cellulose content to 48% from 37%, and enzymatic hydrolysis released 25 g/L glucose. Fermentation of the hydrolysates was highly efficient at 95%, attained in 36 h and 80% in just 12 h. The new wet processing strategy could help in value addition of mixed phumdi biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.121633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.121633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu