- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United States, Italy, ItalyPublisher:MDPI AG Funded by:NSERCNSERCRan Wang; John Gamon; Craig Emmerton; Haitao Li; Enrica Nestola; Gilberto Pastorello; Olaf Menzer;doi: 10.3390/rs8030214
handle: 20.500.14243/440771
Grasslands play important roles in ecosystem production and support a large farming and grazing industry. An accurate and efficient way is needed to estimate grassland health and production for monitoring and adjusting management to get sustainable products and other ecosystem services. Previous studies of grasslands have shown varying relationships between productivity and biodiversity, with most showing either a positive or a hump-shaped relationship where productivity peaks at intermediate diversity. In this study, we used airborne imaging spectrometry combined with ground sampling and eddy covariance measurements to estimate the spatial pattern of production and biodiversity for two sites of contrasting productivity in a southern Alberta prairie ecosystem. Resulting patterns revealed that more diverse sites generally had greater productivity, supporting the hypothesis of a positive relationship between production and biodiversity for this site. We showed that the addition of evenness to richness (using the Shannon Index of dominant species instead of the number of dominant species alone) improved the correlation with optical diversity, an optically derived metric of biodiversity based on the coefficient of variation in spectral reflectance across space. Similarly, the Shannon Index was better correlated with productivity (estimated via NDVI (Normalized Difference Vegetation Index)) than the number of dominant species alone. Optical diversity provided a potent proxy for other more traditional biodiversity metrics (richness and Shannon index). Coupling field measurements and imaging spectrometry provides a method for assessing grassland productivity and biodiversity at a larger scale than can be sampled from the ground, and allows the integrated analysis of the productivity–biodiversity relationship over large areas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United States, Italy, ItalyPublisher:MDPI AG Funded by:NSERCNSERCRan Wang; John Gamon; Craig Emmerton; Haitao Li; Enrica Nestola; Gilberto Pastorello; Olaf Menzer;doi: 10.3390/rs8030214
handle: 20.500.14243/440771
Grasslands play important roles in ecosystem production and support a large farming and grazing industry. An accurate and efficient way is needed to estimate grassland health and production for monitoring and adjusting management to get sustainable products and other ecosystem services. Previous studies of grasslands have shown varying relationships between productivity and biodiversity, with most showing either a positive or a hump-shaped relationship where productivity peaks at intermediate diversity. In this study, we used airborne imaging spectrometry combined with ground sampling and eddy covariance measurements to estimate the spatial pattern of production and biodiversity for two sites of contrasting productivity in a southern Alberta prairie ecosystem. Resulting patterns revealed that more diverse sites generally had greater productivity, supporting the hypothesis of a positive relationship between production and biodiversity for this site. We showed that the addition of evenness to richness (using the Shannon Index of dominant species instead of the number of dominant species alone) improved the correlation with optical diversity, an optically derived metric of biodiversity based on the coefficient of variation in spectral reflectance across space. Similarly, the Shannon Index was better correlated with productivity (estimated via NDVI (Normalized Difference Vegetation Index)) than the number of dominant species alone. Optical diversity provided a potent proxy for other more traditional biodiversity metrics (richness and Shannon index). Coupling field measurements and imaging spectrometry provides a method for assessing grassland productivity and biodiversity at a larger scale than can be sampled from the ground, and allows the integrated analysis of the productivity–biodiversity relationship over large areas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Journal 2017Embargo end date: 01 Jan 2018 France, Norway, Italy, Germany, Switzerland, Ireland, Germany, FrancePublisher:Copernicus GmbH Publicly fundedFunded by:NSERC, EC | BACI, EC | ICOSNSERC ,EC| BACI ,EC| ICOSJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Journal 2017Embargo end date: 01 Jan 2018 France, Norway, Italy, Germany, Switzerland, Ireland, Germany, FrancePublisher:Copernicus GmbH Publicly fundedFunded by:NSERC, EC | BACI, EC | ICOSNSERC ,EC| BACI ,EC| ICOSJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United States, Italy, ItalyPublisher:MDPI AG Funded by:NSERCNSERCRan Wang; John Gamon; Craig Emmerton; Haitao Li; Enrica Nestola; Gilberto Pastorello; Olaf Menzer;doi: 10.3390/rs8030214
handle: 20.500.14243/440771
Grasslands play important roles in ecosystem production and support a large farming and grazing industry. An accurate and efficient way is needed to estimate grassland health and production for monitoring and adjusting management to get sustainable products and other ecosystem services. Previous studies of grasslands have shown varying relationships between productivity and biodiversity, with most showing either a positive or a hump-shaped relationship where productivity peaks at intermediate diversity. In this study, we used airborne imaging spectrometry combined with ground sampling and eddy covariance measurements to estimate the spatial pattern of production and biodiversity for two sites of contrasting productivity in a southern Alberta prairie ecosystem. Resulting patterns revealed that more diverse sites generally had greater productivity, supporting the hypothesis of a positive relationship between production and biodiversity for this site. We showed that the addition of evenness to richness (using the Shannon Index of dominant species instead of the number of dominant species alone) improved the correlation with optical diversity, an optically derived metric of biodiversity based on the coefficient of variation in spectral reflectance across space. Similarly, the Shannon Index was better correlated with productivity (estimated via NDVI (Normalized Difference Vegetation Index)) than the number of dominant species alone. Optical diversity provided a potent proxy for other more traditional biodiversity metrics (richness and Shannon index). Coupling field measurements and imaging spectrometry provides a method for assessing grassland productivity and biodiversity at a larger scale than can be sampled from the ground, and allows the integrated analysis of the productivity–biodiversity relationship over large areas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United States, Italy, ItalyPublisher:MDPI AG Funded by:NSERCNSERCRan Wang; John Gamon; Craig Emmerton; Haitao Li; Enrica Nestola; Gilberto Pastorello; Olaf Menzer;doi: 10.3390/rs8030214
handle: 20.500.14243/440771
Grasslands play important roles in ecosystem production and support a large farming and grazing industry. An accurate and efficient way is needed to estimate grassland health and production for monitoring and adjusting management to get sustainable products and other ecosystem services. Previous studies of grasslands have shown varying relationships between productivity and biodiversity, with most showing either a positive or a hump-shaped relationship where productivity peaks at intermediate diversity. In this study, we used airborne imaging spectrometry combined with ground sampling and eddy covariance measurements to estimate the spatial pattern of production and biodiversity for two sites of contrasting productivity in a southern Alberta prairie ecosystem. Resulting patterns revealed that more diverse sites generally had greater productivity, supporting the hypothesis of a positive relationship between production and biodiversity for this site. We showed that the addition of evenness to richness (using the Shannon Index of dominant species instead of the number of dominant species alone) improved the correlation with optical diversity, an optically derived metric of biodiversity based on the coefficient of variation in spectral reflectance across space. Similarly, the Shannon Index was better correlated with productivity (estimated via NDVI (Normalized Difference Vegetation Index)) than the number of dominant species alone. Optical diversity provided a potent proxy for other more traditional biodiversity metrics (richness and Shannon index). Coupling field measurements and imaging spectrometry provides a method for assessing grassland productivity and biodiversity at a larger scale than can be sampled from the ground, and allows the integrated analysis of the productivity–biodiversity relationship over large areas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/3/214/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2cd2r8bqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8030214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Journal 2017Embargo end date: 01 Jan 2018 France, Norway, Italy, Germany, Switzerland, Ireland, Germany, FrancePublisher:Copernicus GmbH Publicly fundedFunded by:NSERC, EC | BACI, EC | ICOSNSERC ,EC| BACI ,EC| ICOSJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Journal 2017Embargo end date: 01 Jan 2018 France, Norway, Italy, Germany, Switzerland, Ireland, Germany, FrancePublisher:Copernicus GmbH Publicly fundedFunded by:NSERC, EC | BACI, EC | ICOSNSERC ,EC| BACI ,EC| ICOSJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-2017-393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu