- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Report 2021Embargo end date: 21 Dec 2021Publisher:UNESCO-IOC/SCOR Funded by:NSF | Support for International..., NSF | Support for International...NSF| Support for International Ocean Science Activities Through the Scientific Committee on Oceanic Research ,NSF| Support for International Ocean Science Activities Through SCORWells, Mark; Burford, Michele; Kremp, Anke; Montresor, Marina; Pitcher, Grant; Richardson, Anthony; Eriksen, Ruth; Hallegraeff, Gustaaf; Rochester, Wayne; Pitcher, Grant; Burford, Michele; Van de Waal, Dedmer; Bach, Lennart; Berdalet, Elisa; Brandenburg, Karen; Suikkanen, Sanna; Wohlrab, Sylke; Hansen, Per; Hennon, Gwenn; Sefbom, Josefin; Schaum, Elisa; Dyhrman, Sonya; Godhe, Anna; Zingone, Adriana; Escalera, Laura; Bresnan, Elieen; Enevoldsen, Henrik; Provoost, Pieter; Richardson, Anthony; Hamilton, David; Anderson, Clarissa; Hense, Inga; Chapra, Steven;doi: 10.25607/obp-1692
handle: 1834/42263
Our planet Earth is changing. Marine and freshwater ecosystems are experiencing intense natural and anthropogenic pressures that will generate unforeseen changes in their structure and functioning. The drivers of climate change have already altered the dynamics and interactions of the biotic and abiotic components in these ecosystems, and these changes are anticipated to accelerate in the future. Embedded within natural aquatic ecosystems are Harmful Algal Blooms (HABs) that are noxious to aquatic organisms as well as human health and wellbeing.The major aim of these guidelines is to communicate standardized strategies, tools, and protocols to assist researchers studying how climate change drivers may increase or decrease future HAB prevalence in aquatic ecosystems.
OceanBestPractices :... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25607/obp-1692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanBestPractices :... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25607/obp-1692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Natalia Atkins; Jock W. Young; Christian Lønborg; Sarah A. Pausina; Sarah A. Pausina; Julian Uribe-Palomino; Steven Edgar; Asia O. Armstrong; Margaret Miller; Anthony J. Richardson; Anthony J. Richardson; Ruth Eriksen; Todd D. O'Brien; Wayne Rochester; Jason D. Everett; Jason D. Everett; Jason D. Everett; Felicity R. McEnnulty; Joanna Strzelecki; Claire H. Davies; Peter C. Rothlisberg; Mark Tonks; Kerrie M. Swadling; Lesley Clementson; J. Anthony Koslow; Iain M. Suthers; Paul D. van Ruth; Anita Slotwinski; Frank Coman; A. David McKinnon;AbstractZooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0–60°S, 110–160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.
Scientific Data arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00625-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Data arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00625-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report 2021Embargo end date: 21 Dec 2021Publisher:UNESCO-IOC/SCOR Funded by:NSF | Support for International..., NSF | Support for International...NSF| Support for International Ocean Science Activities Through the Scientific Committee on Oceanic Research ,NSF| Support for International Ocean Science Activities Through SCORWells, Mark; Burford, Michele; Kremp, Anke; Montresor, Marina; Pitcher, Grant; Richardson, Anthony; Eriksen, Ruth; Hallegraeff, Gustaaf; Rochester, Wayne; Pitcher, Grant; Burford, Michele; Van de Waal, Dedmer; Bach, Lennart; Berdalet, Elisa; Brandenburg, Karen; Suikkanen, Sanna; Wohlrab, Sylke; Hansen, Per; Hennon, Gwenn; Sefbom, Josefin; Schaum, Elisa; Dyhrman, Sonya; Godhe, Anna; Zingone, Adriana; Escalera, Laura; Bresnan, Elieen; Enevoldsen, Henrik; Provoost, Pieter; Richardson, Anthony; Hamilton, David; Anderson, Clarissa; Hense, Inga; Chapra, Steven;doi: 10.25607/obp-1692
handle: 1834/42263
Our planet Earth is changing. Marine and freshwater ecosystems are experiencing intense natural and anthropogenic pressures that will generate unforeseen changes in their structure and functioning. The drivers of climate change have already altered the dynamics and interactions of the biotic and abiotic components in these ecosystems, and these changes are anticipated to accelerate in the future. Embedded within natural aquatic ecosystems are Harmful Algal Blooms (HABs) that are noxious to aquatic organisms as well as human health and wellbeing.The major aim of these guidelines is to communicate standardized strategies, tools, and protocols to assist researchers studying how climate change drivers may increase or decrease future HAB prevalence in aquatic ecosystems.
OceanBestPractices :... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25607/obp-1692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanBestPractices :... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25607/obp-1692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Natalia Atkins; Jock W. Young; Christian Lønborg; Sarah A. Pausina; Sarah A. Pausina; Julian Uribe-Palomino; Steven Edgar; Asia O. Armstrong; Margaret Miller; Anthony J. Richardson; Anthony J. Richardson; Ruth Eriksen; Todd D. O'Brien; Wayne Rochester; Jason D. Everett; Jason D. Everett; Jason D. Everett; Felicity R. McEnnulty; Joanna Strzelecki; Claire H. Davies; Peter C. Rothlisberg; Mark Tonks; Kerrie M. Swadling; Lesley Clementson; J. Anthony Koslow; Iain M. Suthers; Paul D. van Ruth; Anita Slotwinski; Frank Coman; A. David McKinnon;AbstractZooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0–60°S, 110–160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.
Scientific Data arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00625-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Scientific Data arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00625-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu