- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, Australia, United Kingdom, Italy, United Kingdom, Australia, Germany, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., NSF | COLLABORATIVE RESEARCH: E..., ARC | Testing climatic, physiol... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 835 citations 835 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Oxford University Press (OUP) Honglang Duan; Josephine Ontedhu; Paul Milham; James D Lewis; David T Tissue;AbstractEucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6–500 mg kg−1) for 120 days under two [CO2] (ambient: 400 μmol mol−1 (Ca) and elevated: 640 μmol mol−1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpz094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpz094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Oxford University Press (OUP) Funded by:ARC | Eucalypt growth in past a..., ARC | Woodland response to elev...ARC| Eucalypt growth in past and future environments - a novel approach to understanding the impacts of atmospheric CO2 and climate ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?David T. Tissue; James D. Lewis; James D. Lewis; Travis E. Huxman; Renee Smith; Honglang Duan; Honglang Duan; Brian Chaszar;pmid: 29701843
Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, Australia, United Kingdom, Italy, United Kingdom, Australia, Germany, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., NSF | COLLABORATIVE RESEARCH: E..., ARC | Testing climatic, physiol... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 835 citations 835 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Oxford University Press (OUP) Honglang Duan; Josephine Ontedhu; Paul Milham; James D Lewis; David T Tissue;AbstractEucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6–500 mg kg−1) for 120 days under two [CO2] (ambient: 400 μmol mol−1 (Ca) and elevated: 640 μmol mol−1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpz094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpz094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Oxford University Press (OUP) Funded by:ARC | Eucalypt growth in past a..., ARC | Woodland response to elev...ARC| Eucalypt growth in past and future environments - a novel approach to understanding the impacts of atmospheric CO2 and climate ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?David T. Tissue; James D. Lewis; James D. Lewis; Travis E. Huxman; Renee Smith; Honglang Duan; Honglang Duan; Brian Chaszar;pmid: 29701843
Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu