- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Chemical Society (ACS) C. Luke Williams; Deepti Tanjore; Bryon S. Donohoe; Julie L. Bowen; Allison E. Ray; Amber N. Hoover; Troy A. Semelsberger; Jipeng Yan; Kenneth L. Sale; Ethan Oksen; Manal Yunes; Juan H. Leal; Rachel Emerson; Elizabeth Bose; Jordan Klinger; Christine M. Beavers; Christine M. Beavers; Chenlin Li; Edward J. Wolfrum; Michael G. Resch; Akash Narani;Feedstock variability that originates from biomass production and field conditions propagates through the value chain, posing a significant challenge to the emerging biorefinery industry. Variability in feedstock properties impacts feeding, handling, equipment operations, and conversion performance. Feedstock quality attributes, and their variations, are often overlooked in assessing feedstock value and utilization for conversion to fuels, chemicals, and products. This study developed and employed a multiscale analytical characterization approach coupled with data analytic methods to better understand the sources and distribution of feedstock quality variability through evaluation of 24 corn stover bales collected in 4 counties of Iowa. In total, 216 core samples were generated by sampling nine positions on each bale using a reliable bale coring process. The samples were characterized for a broad suite of physicochemical properties ranging across field and bale, macro, micro, and molecular scales. Results demonstrated that feedstock quality attributes can vary at all spatial scales and that multiple sources of variability must be considered in order to establish and manage biomass quality for conversion processes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/4xr5h7g2Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Sustainable Chemistry & EngineeringArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/4xr5h7g2Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Sustainable Chemistry & EngineeringArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Authors: David W. Templeton; Katherine E. Sharpless; Edward J. Wolfrum; James H. Yen;Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491-8494) were prepared and characterized, via an interlaboratory comparison exercise in the early 1990s to evaluate biomass summative compositional methods, analysts, and laboratories. Having common, uniform, and stable biomass reference materials gives the opportunity to assess compositional data compared to other analysts, to other labs, and to a known compositional value. The expiration date for the original characterization of these RMs was reached and an effort to assess their stability and recharacterize the reference values for the remaining material using more current methods of analysis was initiated. We sent samples of the four biomass RMs to 11 academic, industrial, and government laboratories, familiar with sulfuric acid compositional methods, for recharacterization of the component reference values. In this work, we have used an expanded suite of analytical methods that are more appropriate for herbaceous feedstocks, to recharacterize the RMs' compositions. We report the median values and the expanded uncertainty values for the four RMs on a dry-mass, whole-biomass basis. The original characterization data has been recalculated using median statistics to facilitate comparisons with this data. We found improved total component closures for three out of the four RMs compared to the original characterization, and the total component closures were near 100 %, which suggests that most components were accurately measured and little double counting occurred. The major components were not statistically different in the recharacterization which suggests that the biomass materials are stable during storage and that additional components, not seen in the original characterization, were quantified here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9675-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9675-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory Wolfrum, Ed; Knoshaug, Eric; Laurens, Lieve; Harmon, Valerie; Dempster, Thomas; McGowan, John; Rosov, Theresa; Cardello, David; Arrowsmith, Sarah; Kempkes, Sarah; Bautista, Maria; Lundquist, Tryg; Crowe, Braden; Murawsky, Garrett; Nicolai, Eric; Rowe, Egan; Knurek, Emily; Javar, Reyna; Saracco Alvarez, Marcela; Schlosser, Steve; Riddle, Mary; Withstandley, Chris; Chen, Yongsheng; Van Ginkel, Steven; Igou, Thomas; Xu, Chunyan; Hu, Zixuan;doi: 10.7799/1400389
ATP3 Unified Field Study DataThe Algae Testbed Public-Private Partnership ATP3 was established with the goal of investigating open pond algae cultivation across different geographic climatic seasonal and operational conditions while setting the benchmark for quality data collection analysis and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework the Unified Field Studies UFS were designed to characterize the cultivation of different algal strains during all 4 seasons across this testbed network. The dataset presented here is the complete curated climatic cultivation harvest and biomass composition data for each season at each site. These data enable others to do in-depth cultivation harvest techno-economic life cycle resource and predictive growth modeling analysis as well as develop crop protection strategies for the nascent algae industry.NREL Sub award Number DE-AC36-08-GO28308
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1400389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1400389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV David A. Sievers; Edward J. Wolfrum; Melvin P. Tucker; Jonathan J. Stickel; Erik M. Kuhn;Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous salt concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Springer Science and Business Media LLC Lieve M.L. Laurens; Thomas A. Dempster; Eric P. Knoshaug; Edward J. Wolfrum; John McGowen; Valerie L. Harmon;AbstractNational scale agronomic projections are an important input for assessing potential benefits of algae cultivation on the future of innovative agriculture. The Algae Testbed Public-Private Partnership was established with the goal of investigating open pond algae cultivation across different geographic, climatic, seasonal, and operational conditions while setting the benchmark for quality data collection, analysis, and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework, the Unified Field Studies were designed for algae cultivation during all 4 seasons across the testbed network. With increasingly diverse algae research and development, and field deployment strategies, the challenges associated with data collection, quality, and dissemination increase dramatically. The dataset presented here is the complete, curated, climatic, cultivation, harvest, and biomass composition data for each season at each site. These data enable others to do in-depth cultivation, harvest, techno-economic, life cycle, resource, and predictive growth modelling analysis, as well as development of crop protection strategies throughout the algae cultivation industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010Publisher:American Chemical Society (ACS) Authors: David W. Templeton; Christopher J. Scarlata; Justin B. Sluiter; Edward J. Wolfrum;The most common procedures for characterizing the chemical components of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis to fractionate biomass for gravimetric and instrumental analyses. The uncertainty (i.e., dispersion of values from repeated measurement) in the primary data is of general interest to those with technical or financial interests in biomass conversion technology. The composition of a homogenized corn stover feedstock (154 replicate samples in 13 batches, by 7 analysts in 2 laboratories) was measured along with a National Institute of Standards and Technology (NIST) reference sugar cane bagasse, as a control, using this laboratory's suite of laboratory analytical procedures (LAPs). The uncertainty was evaluated by the statistical analysis of these data and is reported as the standard deviation of each component measurement. Censored and uncensored versions of these data sets are reported, as evidence was found for intermittent instrumental and equipment problems. The censored data are believed to represent the "best case" results of these analyses, whereas the uncensored data show how small method changes can strongly affect the uncertainties of these empirical methods. Relative standard deviations (RSD) of 1-3% are reported for glucan, xylan, lignin, extractives, and total component closure with the other minor components showing 4-10% RSD. The standard deviations seen with the corn stover and NIST bagasse materials were similar, which suggests that the uncertainties reported here are due more to the analytical method used than to the specific feedstock type being analyzed.
Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2010 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefJournal of Agricultural and Food ChemistryArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jf100807b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2010 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefJournal of Agricultural and Food ChemistryArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jf100807b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:UKRI | Soteria - Demonstrating t...UKRI| Soteria - Demonstrating the Security Capabilities of the Morello System in the e-commerce Vertical Industrial SegmentEdward J. Wolfrum; Courtney Payne; Alexa Schwartz; Joshua Jacobs; Robert W. Kressin;AbstractThe performance of a conventional laboratory near-infrared (NIR) spectrometer and two NIR spectrometer prototypes (a Texas Instruments NIRSCAN Nano evaluation model (EVM) and an InnoSpectra NIR-M-R2 spectrometer) are compared by collecting reflectance spectra of 270 well-characterized herbaceous biomass samples, building calibration models using the partial least squares (PLS-2) algorithm to predict five constituents of the samples from the reflectance spectra, and comparing the resulting model statistics. The prediction models developed using spectra from the Foss XDS spectrometer were slightly better than the prediction models developed using spectra from either the TI NIRSCAN Nano EVM and the InnoSpectra NIR-M-R2 as measured by the root mean square error (RMSECV) and the correlation coefficient (R2_cv) for “leave-one-out” cross-validation (CV). The models built from the two prototype units were not statistically significantly different from each other (p = 0.05). The Foss spectrometer has a larger wavelength range (400–2500 nm) compared with the two prototypes (900–1700 nm). When the spectra from the Foss XDS spectrometer were truncated so their wavelength range matched the wavelength range of the two prototype units, the resulting model was not statistically significantly different from the models from either prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-020-10135-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-020-10135-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Authors: Lieve M.L. Laurens; Edward J. Wolfrum;A large number of algal biofuels projects rely on a lipid screening technique for selecting a particular algal strain with which to work. We have developed a multivariate calibration model for predicting the levels of spiked neutral and polar lipids in microalgae, based on infrared (both near-infrared (NIR) and Fourier transform infrared (FTIR)) spectroscopy. The advantage of an infrared spectroscopic technique over traditional chemical methods is the direct, fast, and non-destructive nature of the screening method. This calibration model provides a fast and high-throughput method for determining lipid content, providing an alternative to laborious traditional wet chemical methods. We present data of a study based on nine levels of exogenous lipid spikes (between 1% and 3% (w/w)) of trilaurin as a triglyceride and phosphatidylcholine as a phospholipid model compound in lyophilized algal biomass. We used a chemometric approach to corrrelate the main spectral changes upon increasing phospholipid and triglyceride content in algal biomass collected from single species. A multivariate partial least squares (PLS) calibration model was built and improved upon with the addition of multiple species to the dataset. Our results show that NIR and FTIR spectra of biomass from four species can be used to accurately predict the levels of exogenously added lipids. It appears that the cross-species verification of the predictions is more accurate with the NIR models (R2 = 0.969 and 0.951 and RMECV = 0.182 and 0.227% for trilaurin and phosphatidylcholine spike respectively), compared with FTIR (R2 = 0.907 and 0.464 and RMECV = 0.302 and 0.767% for trilaurin and phosphatidylcholine spike, respectively). A fast high-throughput spectroscopic lipid fingerprinting method can be applied in a multitude of screening efforts that are ongoing in the microalgal research community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-010-9098-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 132 citations 132 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-010-9098-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Ryan M. Ness; Daniel Stevens; Nicholas J. Nagle; Allison E. Ray; Edward J. Wolfrum; Darren J. Peterson;In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results. The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. The pelleting process appears to provide a slightly positive effect on overall total sugar yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-017-9813-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-017-9813-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.;doi: 10.2172/1071953
NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1071953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1071953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Chemical Society (ACS) C. Luke Williams; Deepti Tanjore; Bryon S. Donohoe; Julie L. Bowen; Allison E. Ray; Amber N. Hoover; Troy A. Semelsberger; Jipeng Yan; Kenneth L. Sale; Ethan Oksen; Manal Yunes; Juan H. Leal; Rachel Emerson; Elizabeth Bose; Jordan Klinger; Christine M. Beavers; Christine M. Beavers; Chenlin Li; Edward J. Wolfrum; Michael G. Resch; Akash Narani;Feedstock variability that originates from biomass production and field conditions propagates through the value chain, posing a significant challenge to the emerging biorefinery industry. Variability in feedstock properties impacts feeding, handling, equipment operations, and conversion performance. Feedstock quality attributes, and their variations, are often overlooked in assessing feedstock value and utilization for conversion to fuels, chemicals, and products. This study developed and employed a multiscale analytical characterization approach coupled with data analytic methods to better understand the sources and distribution of feedstock quality variability through evaluation of 24 corn stover bales collected in 4 counties of Iowa. In total, 216 core samples were generated by sampling nine positions on each bale using a reliable bale coring process. The samples were characterized for a broad suite of physicochemical properties ranging across field and bale, macro, micro, and molecular scales. Results demonstrated that feedstock quality attributes can vary at all spatial scales and that multiple sources of variability must be considered in order to establish and manage biomass quality for conversion processes.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/4xr5h7g2Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Sustainable Chemistry & EngineeringArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/4xr5h7g2Data sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Sustainable Chemistry & EngineeringArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b06763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Authors: David W. Templeton; Katherine E. Sharpless; Edward J. Wolfrum; James H. Yen;Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491-8494) were prepared and characterized, via an interlaboratory comparison exercise in the early 1990s to evaluate biomass summative compositional methods, analysts, and laboratories. Having common, uniform, and stable biomass reference materials gives the opportunity to assess compositional data compared to other analysts, to other labs, and to a known compositional value. The expiration date for the original characterization of these RMs was reached and an effort to assess their stability and recharacterize the reference values for the remaining material using more current methods of analysis was initiated. We sent samples of the four biomass RMs to 11 academic, industrial, and government laboratories, familiar with sulfuric acid compositional methods, for recharacterization of the component reference values. In this work, we have used an expanded suite of analytical methods that are more appropriate for herbaceous feedstocks, to recharacterize the RMs' compositions. We report the median values and the expanded uncertainty values for the four RMs on a dry-mass, whole-biomass basis. The original characterization data has been recalculated using median statistics to facilitate comparisons with this data. We found improved total component closures for three out of the four RMs compared to the original characterization, and the total component closures were near 100 %, which suggests that most components were accurately measured and little double counting occurred. The major components were not statistically different in the recharacterization which suggests that the biomass materials are stable during storage and that additional components, not seen in the original characterization, were quantified here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9675-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9675-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:National Renewable Energy Laboratory - Data (NREL-DATA), Golden, CO (United States); National Renewable Energy Laboratory Wolfrum, Ed; Knoshaug, Eric; Laurens, Lieve; Harmon, Valerie; Dempster, Thomas; McGowan, John; Rosov, Theresa; Cardello, David; Arrowsmith, Sarah; Kempkes, Sarah; Bautista, Maria; Lundquist, Tryg; Crowe, Braden; Murawsky, Garrett; Nicolai, Eric; Rowe, Egan; Knurek, Emily; Javar, Reyna; Saracco Alvarez, Marcela; Schlosser, Steve; Riddle, Mary; Withstandley, Chris; Chen, Yongsheng; Van Ginkel, Steven; Igou, Thomas; Xu, Chunyan; Hu, Zixuan;doi: 10.7799/1400389
ATP3 Unified Field Study DataThe Algae Testbed Public-Private Partnership ATP3 was established with the goal of investigating open pond algae cultivation across different geographic climatic seasonal and operational conditions while setting the benchmark for quality data collection analysis and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework the Unified Field Studies UFS were designed to characterize the cultivation of different algal strains during all 4 seasons across this testbed network. The dataset presented here is the complete curated climatic cultivation harvest and biomass composition data for each season at each site. These data enable others to do in-depth cultivation harvest techno-economic life cycle resource and predictive growth modeling analysis as well as develop crop protection strategies for the nascent algae industry.NREL Sub award Number DE-AC36-08-GO28308
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1400389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7799/1400389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV David A. Sievers; Edward J. Wolfrum; Melvin P. Tucker; Jonathan J. Stickel; Erik M. Kuhn;Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous salt concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2015.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Springer Science and Business Media LLC Lieve M.L. Laurens; Thomas A. Dempster; Eric P. Knoshaug; Edward J. Wolfrum; John McGowen; Valerie L. Harmon;AbstractNational scale agronomic projections are an important input for assessing potential benefits of algae cultivation on the future of innovative agriculture. The Algae Testbed Public-Private Partnership was established with the goal of investigating open pond algae cultivation across different geographic, climatic, seasonal, and operational conditions while setting the benchmark for quality data collection, analysis, and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework, the Unified Field Studies were designed for algae cultivation during all 4 seasons across the testbed network. With increasingly diverse algae research and development, and field deployment strategies, the challenges associated with data collection, quality, and dissemination increase dramatically. The dataset presented here is the complete, curated, climatic, cultivation, harvest, and biomass composition data for each season at each site. These data enable others to do in-depth cultivation, harvest, techno-economic, life cycle, resource, and predictive growth modelling analysis, as well as development of crop protection strategies throughout the algae cultivation industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010Publisher:American Chemical Society (ACS) Authors: David W. Templeton; Christopher J. Scarlata; Justin B. Sluiter; Edward J. Wolfrum;The most common procedures for characterizing the chemical components of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis to fractionate biomass for gravimetric and instrumental analyses. The uncertainty (i.e., dispersion of values from repeated measurement) in the primary data is of general interest to those with technical or financial interests in biomass conversion technology. The composition of a homogenized corn stover feedstock (154 replicate samples in 13 batches, by 7 analysts in 2 laboratories) was measured along with a National Institute of Standards and Technology (NIST) reference sugar cane bagasse, as a control, using this laboratory's suite of laboratory analytical procedures (LAPs). The uncertainty was evaluated by the statistical analysis of these data and is reported as the standard deviation of each component measurement. Censored and uncensored versions of these data sets are reported, as evidence was found for intermittent instrumental and equipment problems. The censored data are believed to represent the "best case" results of these analyses, whereas the uncensored data show how small method changes can strongly affect the uncertainties of these empirical methods. Relative standard deviations (RSD) of 1-3% are reported for glucan, xylan, lignin, extractives, and total component closure with the other minor components showing 4-10% RSD. The standard deviations seen with the corn stover and NIST bagasse materials were similar, which suggests that the uncertainties reported here are due more to the analytical method used than to the specific feedstock type being analyzed.
Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2010 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefJournal of Agricultural and Food ChemistryArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jf100807b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2010 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefJournal of Agricultural and Food ChemistryArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jf100807b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:UKRI | Soteria - Demonstrating t...UKRI| Soteria - Demonstrating the Security Capabilities of the Morello System in the e-commerce Vertical Industrial SegmentEdward J. Wolfrum; Courtney Payne; Alexa Schwartz; Joshua Jacobs; Robert W. Kressin;AbstractThe performance of a conventional laboratory near-infrared (NIR) spectrometer and two NIR spectrometer prototypes (a Texas Instruments NIRSCAN Nano evaluation model (EVM) and an InnoSpectra NIR-M-R2 spectrometer) are compared by collecting reflectance spectra of 270 well-characterized herbaceous biomass samples, building calibration models using the partial least squares (PLS-2) algorithm to predict five constituents of the samples from the reflectance spectra, and comparing the resulting model statistics. The prediction models developed using spectra from the Foss XDS spectrometer were slightly better than the prediction models developed using spectra from either the TI NIRSCAN Nano EVM and the InnoSpectra NIR-M-R2 as measured by the root mean square error (RMSECV) and the correlation coefficient (R2_cv) for “leave-one-out” cross-validation (CV). The models built from the two prototype units were not statistically significantly different from each other (p = 0.05). The Foss spectrometer has a larger wavelength range (400–2500 nm) compared with the two prototypes (900–1700 nm). When the spectra from the Foss XDS spectrometer were truncated so their wavelength range matched the wavelength range of the two prototype units, the resulting model was not statistically significantly different from the models from either prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-020-10135-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-020-10135-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Authors: Lieve M.L. Laurens; Edward J. Wolfrum;A large number of algal biofuels projects rely on a lipid screening technique for selecting a particular algal strain with which to work. We have developed a multivariate calibration model for predicting the levels of spiked neutral and polar lipids in microalgae, based on infrared (both near-infrared (NIR) and Fourier transform infrared (FTIR)) spectroscopy. The advantage of an infrared spectroscopic technique over traditional chemical methods is the direct, fast, and non-destructive nature of the screening method. This calibration model provides a fast and high-throughput method for determining lipid content, providing an alternative to laborious traditional wet chemical methods. We present data of a study based on nine levels of exogenous lipid spikes (between 1% and 3% (w/w)) of trilaurin as a triglyceride and phosphatidylcholine as a phospholipid model compound in lyophilized algal biomass. We used a chemometric approach to corrrelate the main spectral changes upon increasing phospholipid and triglyceride content in algal biomass collected from single species. A multivariate partial least squares (PLS) calibration model was built and improved upon with the addition of multiple species to the dataset. Our results show that NIR and FTIR spectra of biomass from four species can be used to accurately predict the levels of exogenously added lipids. It appears that the cross-species verification of the predictions is more accurate with the NIR models (R2 = 0.969 and 0.951 and RMECV = 0.182 and 0.227% for trilaurin and phosphatidylcholine spike respectively), compared with FTIR (R2 = 0.907 and 0.464 and RMECV = 0.302 and 0.767% for trilaurin and phosphatidylcholine spike, respectively). A fast high-throughput spectroscopic lipid fingerprinting method can be applied in a multitude of screening efforts that are ongoing in the microalgal research community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-010-9098-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 132 citations 132 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-010-9098-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Ryan M. Ness; Daniel Stevens; Nicholas J. Nagle; Allison E. Ray; Edward J. Wolfrum; Darren J. Peterson;In this work, we examined the behavior of feedstock blends and the effect of a specific feedstock densification strategy (pelleting) on the release and yield of structural carbohydrates in a laboratory-scale dilute acid pretreatment (PT) and enzymatic hydrolysis (EH) assay. We report overall carbohydrate release and yield from the two-stage PT-EH assay for five single feedstocks (two corn stovers, miscanthus, switchgrass, and hybrid poplar) and three feedstock blends (corn stover-switchgrass, corn stover-switchgrass-miscanthus, and corn stover-switchgrass-hybrid poplar). We first examined the experimental results over time to establish the robustness of the PT-EH assay, which limits the precision of the experimental results. The use of two different control samples in the assay enabled us to identify (and correct for) a small bias in the EH portion of the combined assay for some runs. We then examined the effect of variable pretreatment reaction conditions (residence time, acid loading, and reactor temperature) on the conversion of a single feedstock (single-pass corn stover, CS-SP) in order to establish the range of pretreatment reaction conditions likely to provide optimal conversion data. Finally, we applied the assay to the 16 materials (8 feedstocks in 2 formats, loose and pelleted) over a more limited range of pretreatment experimental conditions. The four herbaceous feedstocks behaved similarly, while the hybrid poplar feedstock required higher pretreatment temperatures for optimal results. As expected, the yield data for three blended feedstocks were the average of the yield data for the individual feedstocks. The pelleting process appears to provide a slightly positive effect on overall total sugar yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-017-9813-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-017-9813-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.;doi: 10.2172/1071953
NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1071953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1071953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu