- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:American Chemical Society (ACS) Zhu, Ying; Tao, Shu; Price, Oliver R.; Shen, Huizhong; Jones, Kevin C.; Sweetman, Andrew J.;pmid: 25942589
SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b00474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b00474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Ke Jiang; Yatai Men; Ran Xing; Bo Fu; Guofeng Shen; Bengang Li; Shu Tao;pmid: 36734358
Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:American Chemical Society (ACS) Authors: Wenxin Liu; Shu Tao; Shanshan Xu;doi: 10.1021/es0517062
pmid: 16509306
Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es0517062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu547 citations 547 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es0517062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:American Chemical Society (ACS) Wang, Rong; Tao, Shu; Shen, Huizhong; Huang, Ye; Chen, Han; Shen, Guofeng; Li, Wei; Zhang, Yanyan; Chen, Yuanchen; Lin, Nan; Su, Shu; Li, Bengang; Liu, Junfeng; Liu, Wenxin; Balkanski, Yves; Ciais, Philippe; Boucher, Olivier;doi: 10.1021/es5021422
pmid: 24825392
Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5021422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5021422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Lu Zhang; Zhihan Luo; Rui Xiong; Xinlei Liu; Yaojie Li; Wei Du; Yuanchen Chen; Bo Pan; Hefa Cheng; Guofeng Shen; Shu Tao;pmid: 34269570
Black carbon (BC) emissions, derived primarily from incomplete fuel combustion, significantly affect the global and regional climate. Mass absorption efficiency (MAE) is one important parameter in evaluating the climate impacts of BC. Here, values and variabilities in the MAE of BC (MAEBC) from real-world residential emissions were investigated from a field campaign covering 163 burning events for different fuel-stove combinations. MAEBC (average: 12 ± 5 m2/g) was normally distributed and varied greatly by 2 orders of magnitude. Statistically significant differences in MAEBC were found for various fuels, while no significant differences were observed among different stoves. The fuel difference explained 72 ± 7% of the MAEBC variation. MAEBC did not correlate with the modified combustion efficiency but positively correlated with the ratio of organic carbon (OC) to elemental carbon (EC) and negatively correlated with char-EC. The OC/EC ratio was not always lower in coal emissions in comparison to biomass burning emissions. Coal- and biomass-burning emissions had different profiles of carbon fractions. Char-EC, OC, OC/EC, and char-EC/soot-EC can explain 68.7% of the MAEBC variation, providing the potential for predicting MAEBC from the carbon fractions, since they are more commonly measured and available.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Wei Li; Rong Wang; Shu Tao; Junfeng Liu; Yilin Chen; Wenxin Liu; Han Chen; Nan Lin; Bengang Li; Yuanchen Chen; Huizhong Shen; Yanyan Zhang; Xilong Wang; Shu Su; Raymond M. Coveney; Ye Huang;doi: 10.1021/es404110f
pmid: 24433051
The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es404110f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es404110f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:American Chemical Society (ACS) Lu Zhang; Zhihan Luo; Yaojie Li; Yuanchen Chen; Wei Du; Gang Li; Hefa Cheng; Guofeng Shen; Shu Tao;pmid: 33295176
Residential solid fuel use is an important source of black carbon (BC) but also a main source of uncertainty in BC emission inventories, as reliable real-world emission factors (EFs) and data on consumption of noncommercial household fuels are limited. In this study, particulate BC and brown carbon (BrC) for real-world indoor coal and biomass burning were evaluated using a SootScan model OT21 optical transmissometer from a field campaign including 343 biomass/coal combustion events. The highest BC EF from the burning of coal cake (a mixed fuel locally made from coal and clay) was 1.6-6.4 higher than that of other fuels, and BC EFs were higher for coal combustion than for biomass burning. The highest particulate BrC EF was from charcoal burning and was 1.5-4.3 times higher than that from other biomass and coals. Burning fuel in iron stoves had lower BC and BrC EFs, at approximately 15-66% and 40-54%, respectively, compared with burning in other stove types. The difference between heating and cooking activities was statistically insignificant (p > 0.05). A generalized linear model coupled with dominance analysis evidenced that the EFs were significantly associated with fuel and stove types, with the fuel difference being a major influencing factor explaining 68% of the variation. This suggests that a clean fuel transition would have beneficial impacts on air pollution associated with the residential sector in China. The absorption EFs differed by 2-3 orders of magnitude across different fuel-stove combinations. The Absorption Ångström Exponent values for the particulate from residential solid fuel combustions ranged from 0.92 to 3.7.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FrancePublisher:Copernicus GmbH Wei Li; Rong Wang; Bo Wang; Dan Zhu; Xilong Wang; Huizhong Shen; W. X. Liu; Shu Tao; Philippe Ciais; Philippe Ciais; Wenjie Wang; Shilong Piao; Bengang Li; Youfan Chen; Ye Huang; Y. Lu; Yinsong Zhang; Haoxuan Chen; X. P. Liu; Guofeng Shen;Abstract. High-resolution mapping of fuel combustion and CO2 emission provides valuable information for inferring terrestrial carbon balance, modeling pollutant transport, and developing mitigation strategies. Previous inventories included only a limited number of fuel types and anthropogenic emissions were mapped using national population proxies which may distort the geographical distribution within countries. In this study, a sub-national disaggregation method (SDM) was applied to establish a global 0.1°×0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and a corresponding CO2 emission inventory (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the new inventories were evaluated using a Monte Carlo method. The total combustion CO2 emission in 2007 was 11.2 (9.11 and 13.3 as 5th and 95th percentiles) Pg C yr−1. By replacing national disaggregation with sub-national disaggregation in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grids can be reduced from 417 to 68.2 Mg km−2 yr−1, indicating a significant reduction in uncertainty, because the uneven distribution of per-capita fuel consumptions within countries has been taken into account by using the sub-national fuel consumption data directly. Significant difference in per-capita CO2 emissions between urban and rural areas was found in developing nations (2.09 vs. 0.600 Mg C cap−1 yr−1), but not in developed ones (3.57 vs. 3.42 Mg C cap−1 yr−1), suggesting strong influence of the rapid urbanization of these countries on the carbon emission. By using the CO2 emission product, a new spatial pattern of terrestrial carbon sink was derived and the impact of sub-national disaggregation is discussed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acpd-1...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-12-21211-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acpd-1...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-12-21211-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:American Chemical Society (ACS) Wenjun Meng; Huizhong Shen; Xiao Yun; Yilin Chen; Qirui Zhong; Wenxiao Zhang; Xinyuan Yu; Haoran Xu; Yu’ang Ren; Guofeng Shen; Jianmin Ma; Junfeng Liu; Hefa Cheng; Xilong Wang; Dongqiang Zhu; Shu Tao;pmid: 33095991
Residential heating using solid fuels contributes significantly to air pollution and has subsequent health impacts in China. To mitigate emissions, a clean heating campaign (CHC-1) covering 28 municipalities has been implemented. Although only a single penetration rate was initially planned by CHC-1 for all municipalities, outcomes in the different municipalities varied considerably. Recently, a second phase (CHC-2) has been launched for the remaining 128 municipalities in northern China with once again a fixed penetration rate set. Here, we quantified factors that affected the penetration rates of CHC-1, developed an intervention scheme with differentiated targets for CHC-2, and compared the environmental and health benefits of the fixed- and differentiated-rate strategies. We found that the penetration rates of CHC-1 depended on per capita income, terrain slope, and population density and that such relationships could be quantified using a piecewise regression model. This model was applied to develop a differentiated-rate strategy for CHC-2. It clearly evidenced that a differentiated scheme would be more environmentally beneficial. Although the same number of rural households can achieve clean heating under both intervention scenarios, the proposed differentiated strategy can prevent 30 000 (23 000-34 000) premature deaths associated with residential heating annually compared to the 26 000 (21 000-31 000) premature deaths prevented under the fixed-rate scheme. Differences among gender and age groups and the effects of urbanization and aging are also discussed.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:American Chemical Society (ACS) Zhu, Ying; Tao, Shu; Price, Oliver R.; Shen, Huizhong; Jones, Kevin C.; Sweetman, Andrew J.;pmid: 25942589
SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b00474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5b00474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Ke Jiang; Yatai Men; Ran Xing; Bo Fu; Guofeng Shen; Bengang Li; Shu Tao;pmid: 36734358
Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c08958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:American Chemical Society (ACS) Authors: Wenxin Liu; Shu Tao; Shanshan Xu;doi: 10.1021/es0517062
pmid: 16509306
Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es0517062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu547 citations 547 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es0517062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:American Chemical Society (ACS) Wang, Rong; Tao, Shu; Shen, Huizhong; Huang, Ye; Chen, Han; Shen, Guofeng; Li, Wei; Zhang, Yanyan; Chen, Yuanchen; Lin, Nan; Su, Shu; Li, Bengang; Liu, Junfeng; Liu, Wenxin; Balkanski, Yves; Ciais, Philippe; Boucher, Olivier;doi: 10.1021/es5021422
pmid: 24825392
Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5021422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5021422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Lu Zhang; Zhihan Luo; Rui Xiong; Xinlei Liu; Yaojie Li; Wei Du; Yuanchen Chen; Bo Pan; Hefa Cheng; Guofeng Shen; Shu Tao;pmid: 34269570
Black carbon (BC) emissions, derived primarily from incomplete fuel combustion, significantly affect the global and regional climate. Mass absorption efficiency (MAE) is one important parameter in evaluating the climate impacts of BC. Here, values and variabilities in the MAE of BC (MAEBC) from real-world residential emissions were investigated from a field campaign covering 163 burning events for different fuel-stove combinations. MAEBC (average: 12 ± 5 m2/g) was normally distributed and varied greatly by 2 orders of magnitude. Statistically significant differences in MAEBC were found for various fuels, while no significant differences were observed among different stoves. The fuel difference explained 72 ± 7% of the MAEBC variation. MAEBC did not correlate with the modified combustion efficiency but positively correlated with the ratio of organic carbon (OC) to elemental carbon (EC) and negatively correlated with char-EC. The OC/EC ratio was not always lower in coal emissions in comparison to biomass burning emissions. Coal- and biomass-burning emissions had different profiles of carbon fractions. Char-EC, OC, OC/EC, and char-EC/soot-EC can explain 68.7% of the MAEBC variation, providing the potential for predicting MAEBC from the carbon fractions, since they are more commonly measured and available.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c02689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Wei Li; Rong Wang; Shu Tao; Junfeng Liu; Yilin Chen; Wenxin Liu; Han Chen; Nan Lin; Bengang Li; Yuanchen Chen; Huizhong Shen; Yanyan Zhang; Xilong Wang; Shu Su; Raymond M. Coveney; Ye Huang;doi: 10.1021/es404110f
pmid: 24433051
The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es404110f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es404110f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:American Chemical Society (ACS) Lu Zhang; Zhihan Luo; Yaojie Li; Yuanchen Chen; Wei Du; Gang Li; Hefa Cheng; Guofeng Shen; Shu Tao;pmid: 33295176
Residential solid fuel use is an important source of black carbon (BC) but also a main source of uncertainty in BC emission inventories, as reliable real-world emission factors (EFs) and data on consumption of noncommercial household fuels are limited. In this study, particulate BC and brown carbon (BrC) for real-world indoor coal and biomass burning were evaluated using a SootScan model OT21 optical transmissometer from a field campaign including 343 biomass/coal combustion events. The highest BC EF from the burning of coal cake (a mixed fuel locally made from coal and clay) was 1.6-6.4 higher than that of other fuels, and BC EFs were higher for coal combustion than for biomass burning. The highest particulate BrC EF was from charcoal burning and was 1.5-4.3 times higher than that from other biomass and coals. Burning fuel in iron stoves had lower BC and BrC EFs, at approximately 15-66% and 40-54%, respectively, compared with burning in other stove types. The difference between heating and cooking activities was statistically insignificant (p > 0.05). A generalized linear model coupled with dominance analysis evidenced that the EFs were significantly associated with fuel and stove types, with the fuel difference being a major influencing factor explaining 68% of the variation. This suggests that a clean fuel transition would have beneficial impacts on air pollution associated with the residential sector in China. The absorption EFs differed by 2-3 orders of magnitude across different fuel-stove combinations. The Absorption Ångström Exponent values for the particulate from residential solid fuel combustions ranged from 0.92 to 3.7.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 FrancePublisher:Copernicus GmbH Wei Li; Rong Wang; Bo Wang; Dan Zhu; Xilong Wang; Huizhong Shen; W. X. Liu; Shu Tao; Philippe Ciais; Philippe Ciais; Wenjie Wang; Shilong Piao; Bengang Li; Youfan Chen; Ye Huang; Y. Lu; Yinsong Zhang; Haoxuan Chen; X. P. Liu; Guofeng Shen;Abstract. High-resolution mapping of fuel combustion and CO2 emission provides valuable information for inferring terrestrial carbon balance, modeling pollutant transport, and developing mitigation strategies. Previous inventories included only a limited number of fuel types and anthropogenic emissions were mapped using national population proxies which may distort the geographical distribution within countries. In this study, a sub-national disaggregation method (SDM) was applied to establish a global 0.1°×0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and a corresponding CO2 emission inventory (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the new inventories were evaluated using a Monte Carlo method. The total combustion CO2 emission in 2007 was 11.2 (9.11 and 13.3 as 5th and 95th percentiles) Pg C yr−1. By replacing national disaggregation with sub-national disaggregation in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grids can be reduced from 417 to 68.2 Mg km−2 yr−1, indicating a significant reduction in uncertainty, because the uneven distribution of per-capita fuel consumptions within countries has been taken into account by using the sub-national fuel consumption data directly. Significant difference in per-capita CO2 emissions between urban and rural areas was found in developing nations (2.09 vs. 0.600 Mg C cap−1 yr−1), but not in developed ones (3.57 vs. 3.42 Mg C cap−1 yr−1), suggesting strong influence of the rapid urbanization of these countries on the carbon emission. By using the CO2 emission product, a new spatial pattern of terrestrial carbon sink was derived and the impact of sub-national disaggregation is discussed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acpd-1...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-12-21211-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 173 citations 173 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02930038Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acpd-1...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-12-21211-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:American Chemical Society (ACS) Wenjun Meng; Huizhong Shen; Xiao Yun; Yilin Chen; Qirui Zhong; Wenxiao Zhang; Xinyuan Yu; Haoran Xu; Yu’ang Ren; Guofeng Shen; Jianmin Ma; Junfeng Liu; Hefa Cheng; Xilong Wang; Dongqiang Zhu; Shu Tao;pmid: 33095991
Residential heating using solid fuels contributes significantly to air pollution and has subsequent health impacts in China. To mitigate emissions, a clean heating campaign (CHC-1) covering 28 municipalities has been implemented. Although only a single penetration rate was initially planned by CHC-1 for all municipalities, outcomes in the different municipalities varied considerably. Recently, a second phase (CHC-2) has been launched for the remaining 128 municipalities in northern China with once again a fixed penetration rate set. Here, we quantified factors that affected the penetration rates of CHC-1, developed an intervention scheme with differentiated targets for CHC-2, and compared the environmental and health benefits of the fixed- and differentiated-rate strategies. We found that the penetration rates of CHC-1 depended on per capita income, terrain slope, and population density and that such relationships could be quantified using a piecewise regression model. This model was applied to develop a differentiated-rate strategy for CHC-2. It clearly evidenced that a differentiated scheme would be more environmentally beneficial. Although the same number of rural households can achieve clean heating under both intervention scenarios, the proposed differentiated strategy can prevent 30 000 (23 000-34 000) premature deaths associated with residential heating annually compared to the 26 000 (21 000-31 000) premature deaths prevented under the fixed-rate scheme. Differences among gender and age groups and the effects of urbanization and aging are also discussed.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu