- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Authors: Aman Gupta; Anoop Kumar Shukla;AbstractCase studies from global cities contribute to more focused analyses of global warming challenges and demonstrate the performance and effectiveness of mitigation and adaptation strategies to identify lessons about success at the city scale. The case studies were chosen to demonstrate aspects of the critical messages for action priorities in global warming mitigation and adaptation. This work focuses on best practices and initiatives for mitigation and adaptation approaches from developed and developing economies, including North American cities, European cities, Asian cities, and other global cities worldwide. The case studies were grouped to examine, identify, and emphasize important factors in various areas (e.g., local programs and alliances, governance, stakeholder engagement, community actions, and scientific research) that determined the success of adaptation strategies in various global cities. Many recent studies showcase mitigation approaches, particularly those relating to blue-green infrastructure and nature-based strategies. The case studies selected reflect vulnerable regions and demonstrate how increasing global warming significantly concerns individuals, societies, and their infrastructure. The selected studies include Amsterdam in Netherlands; Singapore, as a city in a garden; Boston in USA; Ahmedabad Heat Action Plan in India, aimed at implementing strategies with the objectives of climate adaptation planning; Copenhagen, as a coastal town, is more susceptible to flooding; Portland, the most progressive city in USA; Hamburg in Germany, one of the biggest harbours in Europe; and the 'Rain City Strategy', in Vancouver, Canada. Not all global cities respond the same way, but undertaking joint complex efforts helps mitigate the impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Authors: Aman Gupta; Anoop Kumar Shukla;AbstractCase studies from global cities contribute to more focused analyses of global warming challenges and demonstrate the performance and effectiveness of mitigation and adaptation strategies to identify lessons about success at the city scale. The case studies were chosen to demonstrate aspects of the critical messages for action priorities in global warming mitigation and adaptation. This work focuses on best practices and initiatives for mitigation and adaptation approaches from developed and developing economies, including North American cities, European cities, Asian cities, and other global cities worldwide. The case studies were grouped to examine, identify, and emphasize important factors in various areas (e.g., local programs and alliances, governance, stakeholder engagement, community actions, and scientific research) that determined the success of adaptation strategies in various global cities. Many recent studies showcase mitigation approaches, particularly those relating to blue-green infrastructure and nature-based strategies. The case studies selected reflect vulnerable regions and demonstrate how increasing global warming significantly concerns individuals, societies, and their infrastructure. The selected studies include Amsterdam in Netherlands; Singapore, as a city in a garden; Boston in USA; Ahmedabad Heat Action Plan in India, aimed at implementing strategies with the objectives of climate adaptation planning; Copenhagen, as a coastal town, is more susceptible to flooding; Portland, the most progressive city in USA; Hamburg in Germany, one of the biggest harbours in Europe; and the 'Rain City Strategy', in Vancouver, Canada. Not all global cities respond the same way, but undertaking joint complex efforts helps mitigate the impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Authors: Aman Gupta; Anoop Kumar Shukla;AbstractCase studies from global cities contribute to more focused analyses of global warming challenges and demonstrate the performance and effectiveness of mitigation and adaptation strategies to identify lessons about success at the city scale. The case studies were chosen to demonstrate aspects of the critical messages for action priorities in global warming mitigation and adaptation. This work focuses on best practices and initiatives for mitigation and adaptation approaches from developed and developing economies, including North American cities, European cities, Asian cities, and other global cities worldwide. The case studies were grouped to examine, identify, and emphasize important factors in various areas (e.g., local programs and alliances, governance, stakeholder engagement, community actions, and scientific research) that determined the success of adaptation strategies in various global cities. Many recent studies showcase mitigation approaches, particularly those relating to blue-green infrastructure and nature-based strategies. The case studies selected reflect vulnerable regions and demonstrate how increasing global warming significantly concerns individuals, societies, and their infrastructure. The selected studies include Amsterdam in Netherlands; Singapore, as a city in a garden; Boston in USA; Ahmedabad Heat Action Plan in India, aimed at implementing strategies with the objectives of climate adaptation planning; Copenhagen, as a coastal town, is more susceptible to flooding; Portland, the most progressive city in USA; Hamburg in Germany, one of the biggest harbours in Europe; and the 'Rain City Strategy', in Vancouver, Canada. Not all global cities respond the same way, but undertaking joint complex efforts helps mitigate the impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Authors: Aman Gupta; Anoop Kumar Shukla;AbstractCase studies from global cities contribute to more focused analyses of global warming challenges and demonstrate the performance and effectiveness of mitigation and adaptation strategies to identify lessons about success at the city scale. The case studies were chosen to demonstrate aspects of the critical messages for action priorities in global warming mitigation and adaptation. This work focuses on best practices and initiatives for mitigation and adaptation approaches from developed and developing economies, including North American cities, European cities, Asian cities, and other global cities worldwide. The case studies were grouped to examine, identify, and emphasize important factors in various areas (e.g., local programs and alliances, governance, stakeholder engagement, community actions, and scientific research) that determined the success of adaptation strategies in various global cities. Many recent studies showcase mitigation approaches, particularly those relating to blue-green infrastructure and nature-based strategies. The case studies selected reflect vulnerable regions and demonstrate how increasing global warming significantly concerns individuals, societies, and their infrastructure. The selected studies include Amsterdam in Netherlands; Singapore, as a city in a garden; Boston in USA; Ahmedabad Heat Action Plan in India, aimed at implementing strategies with the objectives of climate adaptation planning; Copenhagen, as a coastal town, is more susceptible to flooding; Portland, the most progressive city in USA; Hamburg in Germany, one of the biggest harbours in Europe; and the 'Rain City Strategy', in Vancouver, Canada. Not all global cities respond the same way, but undertaking joint complex efforts helps mitigate the impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43621-024-00497-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu