- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Springer Science and Business Media LLC Sung Won Kim; Corinde E. Wiers; Ryan Tyler; Ehsan Shokri-Kojori; Yeon Joo Jang; Amna Zehra; Clara Freeman; Veronica Ramirez; Elsa Lindgren; Gregg Miller; Elizabeth A. Cabrera; Tyler Stodden; Min Guo; Şükrü B. Demiral; Nancy Diazgranados; Luke Park; Jeih-San Liow; Victor Pike; Cheryl Morse; Leandro F. Vendruscolo; Robert B. Innis; George F. Koob; Dardo Tomasi; Gene-Jack Wang; Nora D. Volkow;Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [11C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [11C]PBR28 binding. [11C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [11C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [11C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [11C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [11C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-018-0085-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-018-0085-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Nancy Diazgranados; Grace M. Brennan; Lauren Sussman; Erica N. Grodin; Erica N. Grodin; Kelsey Sundby; Reza Momenan; Markus Heilig;pmid: 30143454
Compulsive alcohol use, the tendency to continue alcohol seeking and taking despite negative consequences, is a hallmark of alcohol use disorder. Preclinical rodent studies have suggested a role for the medial prefrontal cortex, anterior insula, and nucleus accumbens in compulsive alcohol seeking. It is presently unknown whether these findings translate to humans. We used a novel functional magnetic resonance imaging paradigm and tested the hypothesis that heavy drinkers would compulsively seek alcohol despite the risk of an aversive consequence, and that this behavior would be associated with the activity of frontostriatal circuitry.Non-treatment-seeking heavy and light drinkers (n = 21 per group) completed a functional magnetic resonance imaging paradigm in which they could earn alcohol or food points at various threat levels (i.e., various probabilities of incurring an aversive consequence). Brain function was evaluated when individuals had the opportunity to earn reward points at the risk of an aversive consequence, an electric shock on the wrist.Compared with light drinkers, heavy drinkers attempted to earn more aversion-paired alcohol points. Frontostriatal circuitry, including the medial prefrontal cortex, anterior insula, and striatum, was more active in this group when viewing threat-predictive alcohol cues. Heavy drinkers had increased connectivity between the anterior insula and the nucleus accumbens. Greater connectivity was associated with more attempts to earn aversion-paired alcohol points and self-reported compulsive alcohol use scores.Higher activation of frontostriatal circuitry in heavy drinkers may contribute to compulsive alcohol seeking. Treatments that disrupt this circuitry may result in a decrease in compulsive alcohol use.
Biological Psychiatr... arrow_drop_down Biological Psychiatry Cognitive Neuroscience and NeuroimagingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiological Psychiatry Cognitive Neuroscience and NeuroimagingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpsc.2018.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Psychiatr... arrow_drop_down Biological Psychiatry Cognitive Neuroscience and NeuroimagingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiological Psychiatry Cognitive Neuroscience and NeuroimagingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpsc.2018.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Informa UK Limited Funded by:NIH | GENETIC STUDIES OF THE EL...NIH| GENETIC STUDIES OF THE ELECTROENCEPHALOGRAM AND EVENT-RELATED POTENTIALSMichael Krumlauf; Narjis Kazmi; Gwenyth R. Wallen; Ralph Thadeus S. Tuason; Nancy Diazgranados; Jennifer J. Barb; Sarah Mudra; Nancy J. Ames; Kelly Ratteree; Shanna Yang; David Goldman; Kornel E. Schuebel; Brianna K. Meeks; Alyssa T. Brooks;Many patients with alcohol use disorder (AUD) consume alcohol chronically and in large amounts that alter intestinal microbiota, damage the gastrointestinal tract, and thereby injure other organs via malabsorption and intestinal inflammation. We hypothesized that alcohol consumption and subsequent abstinence would change the gut microbiome in adults admitted to a treatment program. Stool and oral specimens, diet data, gastrointestinal assessment scores, anxiety, depression measures and drinking amounts were collected longitudinally for up to 4 weeks in 22 newly abstinent inpatients with AUD who were dichotomized as less heavy drinkers (LHD, <10 drinks/d) and very heavy drinkers (VHD, 10 or more drinks/d). Next-generation 16 S rRNA gene sequencing was performed to measure the gut and oral microbiome at up to ten time points/subject and LHD and VHD were compared for change in principal components, Shannon diversity index and specific genera. The first three principal components explained 46.7% of the variance in gut microbiome diversity across time and all study subjects, indicating the change in gut microbiome following abstinence. The first time point was an outlier in three-dimensional principal component space versus all other time points. The gut microbiota in LHD and VHD were significantly dissimilar in change from day 1 to day 5 (p = .03) and from day 1 to week 3 (p = .02). The VHD drinking group displayed greater change from baseline. The Shannon diversity index of the gut microbiome changed significantly during abstinence in five participants. In both groups, the Shannon diversity was lower in the oral microbiome than gut. Ten total genera were shared between oral and stool in the AUD participants. These data were compared with healthy controls from the Human Microbiome Project to investigate the concept of a core microbiome. Rapid changes in gut microbiome following abstinence from alcohol suggest resilience of the gut microbiome in AUD and reflects the benefits of refraining from the highest levels of alcohol and potential benefits of abstinence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19490976.2020.1758010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19490976.2020.1758010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Springer Science and Business Media LLC Sung Won Kim; Corinde E. Wiers; Ryan Tyler; Ehsan Shokri-Kojori; Yeon Joo Jang; Amna Zehra; Clara Freeman; Veronica Ramirez; Elsa Lindgren; Gregg Miller; Elizabeth A. Cabrera; Tyler Stodden; Min Guo; Şükrü B. Demiral; Nancy Diazgranados; Luke Park; Jeih-San Liow; Victor Pike; Cheryl Morse; Leandro F. Vendruscolo; Robert B. Innis; George F. Koob; Dardo Tomasi; Gene-Jack Wang; Nora D. Volkow;Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [11C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [11C]PBR28 binding. [11C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [11C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [11C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [11C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [11C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-018-0085-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-018-0085-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Nancy Diazgranados; Grace M. Brennan; Lauren Sussman; Erica N. Grodin; Erica N. Grodin; Kelsey Sundby; Reza Momenan; Markus Heilig;pmid: 30143454
Compulsive alcohol use, the tendency to continue alcohol seeking and taking despite negative consequences, is a hallmark of alcohol use disorder. Preclinical rodent studies have suggested a role for the medial prefrontal cortex, anterior insula, and nucleus accumbens in compulsive alcohol seeking. It is presently unknown whether these findings translate to humans. We used a novel functional magnetic resonance imaging paradigm and tested the hypothesis that heavy drinkers would compulsively seek alcohol despite the risk of an aversive consequence, and that this behavior would be associated with the activity of frontostriatal circuitry.Non-treatment-seeking heavy and light drinkers (n = 21 per group) completed a functional magnetic resonance imaging paradigm in which they could earn alcohol or food points at various threat levels (i.e., various probabilities of incurring an aversive consequence). Brain function was evaluated when individuals had the opportunity to earn reward points at the risk of an aversive consequence, an electric shock on the wrist.Compared with light drinkers, heavy drinkers attempted to earn more aversion-paired alcohol points. Frontostriatal circuitry, including the medial prefrontal cortex, anterior insula, and striatum, was more active in this group when viewing threat-predictive alcohol cues. Heavy drinkers had increased connectivity between the anterior insula and the nucleus accumbens. Greater connectivity was associated with more attempts to earn aversion-paired alcohol points and self-reported compulsive alcohol use scores.Higher activation of frontostriatal circuitry in heavy drinkers may contribute to compulsive alcohol seeking. Treatments that disrupt this circuitry may result in a decrease in compulsive alcohol use.
Biological Psychiatr... arrow_drop_down Biological Psychiatry Cognitive Neuroscience and NeuroimagingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiological Psychiatry Cognitive Neuroscience and NeuroimagingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpsc.2018.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Psychiatr... arrow_drop_down Biological Psychiatry Cognitive Neuroscience and NeuroimagingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiological Psychiatry Cognitive Neuroscience and NeuroimagingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpsc.2018.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Informa UK Limited Funded by:NIH | GENETIC STUDIES OF THE EL...NIH| GENETIC STUDIES OF THE ELECTROENCEPHALOGRAM AND EVENT-RELATED POTENTIALSMichael Krumlauf; Narjis Kazmi; Gwenyth R. Wallen; Ralph Thadeus S. Tuason; Nancy Diazgranados; Jennifer J. Barb; Sarah Mudra; Nancy J. Ames; Kelly Ratteree; Shanna Yang; David Goldman; Kornel E. Schuebel; Brianna K. Meeks; Alyssa T. Brooks;Many patients with alcohol use disorder (AUD) consume alcohol chronically and in large amounts that alter intestinal microbiota, damage the gastrointestinal tract, and thereby injure other organs via malabsorption and intestinal inflammation. We hypothesized that alcohol consumption and subsequent abstinence would change the gut microbiome in adults admitted to a treatment program. Stool and oral specimens, diet data, gastrointestinal assessment scores, anxiety, depression measures and drinking amounts were collected longitudinally for up to 4 weeks in 22 newly abstinent inpatients with AUD who were dichotomized as less heavy drinkers (LHD, <10 drinks/d) and very heavy drinkers (VHD, 10 or more drinks/d). Next-generation 16 S rRNA gene sequencing was performed to measure the gut and oral microbiome at up to ten time points/subject and LHD and VHD were compared for change in principal components, Shannon diversity index and specific genera. The first three principal components explained 46.7% of the variance in gut microbiome diversity across time and all study subjects, indicating the change in gut microbiome following abstinence. The first time point was an outlier in three-dimensional principal component space versus all other time points. The gut microbiota in LHD and VHD were significantly dissimilar in change from day 1 to day 5 (p = .03) and from day 1 to week 3 (p = .02). The VHD drinking group displayed greater change from baseline. The Shannon diversity index of the gut microbiome changed significantly during abstinence in five participants. In both groups, the Shannon diversity was lower in the oral microbiome than gut. Ten total genera were shared between oral and stool in the AUD participants. These data were compared with healthy controls from the Human Microbiome Project to investigate the concept of a core microbiome. Rapid changes in gut microbiome following abstinence from alcohol suggest resilience of the gut microbiome in AUD and reflects the benefits of refraining from the highest levels of alcohol and potential benefits of abstinence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19490976.2020.1758010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19490976.2020.1758010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu