- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Spain, SpainPublisher:Oxford University Press (OUP) Funded by:FCT | LA 1, UKRI | IWYP Call 2 - Speeding th..., UKRI | 15-IWYP -Wider and faster...FCT| LA 1 ,UKRI| IWYP Call 2 - Speeding the adjustment of photosynthesis to shade-sun transitions to increase yield potential in the field ,UKRI| 15-IWYP -Wider and faster: high-throughout phenotypic exploration of novel genetic variation for breeding high biomass and yield in wheatErik H Murchie; Matthew Reynolds; Gustavo A Slafer; M John Foulkes; Liana Acevedo-Siaca; Lorna McAusland; Robert Sharwood; Simon Griffiths; Richard B Flavell; Jeff Gwyn; Mark Sawkins; Elizabete Carmo-Silva;Abstract Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of ‘wiring diagrams’ has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Lancaster EPrints arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , External research report , Other literature type 2022 France, Netherlands, France, France, FrancePublisher:Zenodo Funded by:EC | CropBooster-PEC| CropBooster-PHarbinson, Jeremy; Klein Lankhorst, René; Murchie, Erik; Loreto, Francesco; Rolland, Norbert; Parry, Martin; Head, Ritchie; Dever, Louisa;The realisation of the full objectives of international policies targeting global food security and climate change mitigation, including the European Green Deal, United Nation’s Sustainable Development Goals (SDGs), the Paris Climate Agreement COP21 and transition away from a fossil-carbon industrial base to one that is more bio-based, requires that we (i) sustainably increase the yield, nutritional quality, and biodiversity of major crop species, (ii) select climate-ready crops that are adapted to future weather dynamic and (iii) increase the resource use efficiency of crops to preserve natural resources, such as fresh water and phosphate and reducing the environmental burden arising from the application of nitrogenous fertiliser. Advanced scientific knowledge and tools for research and crop breeding already provide an excellent platform to build on. A long-term Strategic Research Agenda now needs to be agreed and priorities set to deliver blueprints for climate resilient future-proofed crops. This strategy should then be implemented through an innovative collaborative approach that combines the joint knowledge base of the research and industrial communities, with multi-stakeholder involvement and strong support from policy makers. This white paper has been compiled from contributions from several experts across the field of plant sciences. The CropBooster-P project has developed this strategic research agenda for a crop improvement programme that will provide the genetic innovation to improve and future proof our crop plants. It builds a strong collaboration between plant scientists and modellers, physicists, soil scientists, engineers and coders, biomathematicians, agronomists, plant breeders and farmers. The goal is to exploit the largely untapped genetic diversity that exists within the wild relatives and ancient and heirloom varieties of our crop plants to improve our crops so they will be more resilient, high yielding, resource efficient, nutritious, and ready for the future climate of Europe. The knowledge and technology to reach this goal springs from the transformative developments that have occurred in the last 20 years in genomics, phenomics, crop sciences, molecular plant sciences, agronomy, and plant breeding.
ZENODO arrow_drop_down Wageningen Staff PublicationsExternal research report . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAReport . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7457521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 41 Powered bymore_vert ZENODO arrow_drop_down Wageningen Staff PublicationsExternal research report . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAReport . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7457521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Oxford University Press (OUP) Funded by:UKRI | The 4-dimensional plant: ...UKRI| The 4-dimensional plant: enhanced mechanical canopy excitation for improved crop performancePracha Tree-Intong; Sean Mayes; John N. Ferguson; John N. Ferguson; Sophie B Cowling; Hamidreza Soltani; Ranjan Swarup; Erik H. Murchie;Abstract African rice (Oryza glaberrima) has adapted to challenging environments and is a promising source of genetic variation. We analysed dynamics of photosynthesis and morphology in a reference set of 155 O. glaberrima accessions. Plants were grown in an agronomy glasshouse to late tillering stage. Photosynthesis induction from darkness and the decrease in low light was measured by gas exchange and chlorophyll fluorescence along with root and shoot biomass, stomatal density, and leaf area. Steady-state and kinetic responses were modelled. We describe extensive natural variation in O. glaberrima for steady-state, induction, and reduction responses of photosynthesis that has value for gene discovery and crop improvement. Principal component analyses indicated key clusters of plant biomass, kinetics of photosynthesis (CO2 assimilation, A), and photoprotection induction and reduction (measured by non-photochemical quenching, NPQ), consistent with diverse adaptation. Accessions also clustered according to countries with differing water availability, stomatal conductance (gs), A, and NPQ, indicating that dynamic photosynthesis has adaptive value in O. glaberrima. Kinetics of NPQ, A, and gs showed high correlation with biomass and leaf area. We conclude that dynamic photosynthetic traits and NPQ are important within O. glaberrima, and we highlight NPQ kinetics and NPQ under low light.
University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Rumiana V. Ray; Erik H. Murchie; Olubukola O. Ajigboye;pmid: 25175650
A range of fungicides including epoxiconazole, azoxystrobin and isopyrazam, were applied to winter wheat at GS 31/32 to determine their effect on photosystem II (PSII) efficiency, biomass and yield. Frequent, repeated measurements of chlorophyll fluorescence were carried on plants grown under different water regimes in controlled environment and in the field to establish the transiency of fluorescence changes in relation to fungicide application. Application of the succinate dehydrogenase inhibitor isopyrazam in a mixture with the triazole epoxiconazole increased PSII efficiency associated with a 28% increase in biomass in the controlled environment and 4% increase in grain yield in the field in the absence of disease pressure. Application of isopyrazam and epoxiconazole increased efficiency of PSII photochemistry (Fv'/Fm') as early as 4h following application associated with improved photosynthetic gas exchange and increased rates of electron transport. We reveal a strong, positive relationship between Fv'/Fm' and CO2 assimilation rate, stomatal conductance and transpiration rate in controlled environment and Fv'/Fm' detected just after anthesis on the flag leaf at GS 73 and grain yield in field. We conclude that application of a specific combination of fungicides with positive effects of plant physiology in the absence of disease pressure results in enhanced biomass and yield in winter wheat. Additionally, an accurate and frequent assessment of photosynthetic efficiency of winter wheat plants can be used to predict yield and biomass in the field.
Pesticide Biochemist... arrow_drop_down Pesticide Biochemistry and PhysiologyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pestbp.2014.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pesticide Biochemist... arrow_drop_down Pesticide Biochemistry and PhysiologyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pestbp.2014.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2022Embargo end date: 28 Jan 2022 France, France, France, Netherlands, Belgium, Denmark, United Kingdom, United Kingdom, United Kingdom, France, FrancePublisher:Wiley Funded by:EC | CropBooster-PEC| CropBooster-PGojon, Alain; Nussaume, Laurent; Luu, Doan T.; Murchie, Erik H.; Baekelandt, Alexandra; Rodrigues Saltenis, Vandasue Lily; Cohan, Jean‐Pierre; Desnos, Thierry; Inzé, Dirk; Ferguson, John N.; Guiderdonni, Emmanuel; Krapp, Anne; Klein Lankhorst, René; Maurel, Christophe; Rouached, Hatem; Parry, Martin A. J.; Pribil, Mathias; Scharff, Lars B.; Nacry, Philippe;handle: 1854/LU-8739897
AbstractPlant scientists and farmers are facing major challenges in providing food and nutritional security for a growing population, while preserving natural resources and biodiversity. Moreover, this should be done while adapting agriculture to climate change and by reducing its carbon footprint. To address these challenges, there is an urgent need to breed crops that are more resilient to suboptimal environments. Huge progress has recently been made in understanding the physiological, genetic and molecular bases of plant nutrition and environmental responses, paving the way towards a more sustainable agriculture. In this review, we present an overview of these progresses and strategies that could be developed to increase plant nutrient use efficiency and tolerance to abiotic stresses. As illustrated by many examples, they already led to promising achievements and crop improvements. Here, we focus on nitrogen and phosphate uptake and use efficiency and on adaptation to drought, salinity and heat stress. These examples first show the necessity of deepening our physiological and molecular understanding of plant environmental responses. In particular, more attention should be paid to investigate stress combinations and stress recovery and acclimation that have been largely neglected to date. It will be necessary to extend these approaches from model plants to crops, to unravel the relevant molecular targets of biotechnological or genetic strategies directly in these species. Similarly, sustained efforts should be done for further exploring the genetic resources available in these species, as well as in wild species adapted to unfavourable environments. Finally, technological developments will be required to breed crops that are more resilient and efficient. This especially relates to the development of multiscale phenotyping under field conditions and a wide range of environments, and use of modelling and big data management to handle the huge amount of information provided by the new molecular, genetic and phenotyping techniques.
Food and Energy Secu... arrow_drop_down University of Essex Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03605663Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsFood and Energy SecurityArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyLancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down University of Essex Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03605663Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsFood and Energy SecurityArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyLancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Chien-Wei Lee; Rea Antoniou Kourounioti; Jeffrey C.S. Wu; Erik Murchie; Mercedes Maroto-Valer; Oliver E. Jensen; Chao-Wei Huang; Alexander Ruban;Abstract Photocatalytic reduction of CO2 into valuable hydrocarbons using TiO2 is a promising route for mitigating the effects of global warming and meeting future energy demands. However, TiO2 utilises UV light for photocatalysis and its hydrocarbon yields are still low. In order to enhance the light absorption and increase yields, light-harvesting complexes (LHCII) extracted from spinach were attached to the surface of Rh-doped TiO2 (TiO2:Rh) resulting in a hybrid catalyst, TiO2:Rh-LHCII. The LHCII can absorb visible light in green plants, which convert CO2 to sugars via photosynthesis. CO, acetaldehyde and methyl formate were produced from aqueous CO2 solution in a stirred batch reactor under visible-light irradiation. The yields of acetaldehyde and methyl formate were enhanced by almost ten and four times respectively, when using TiO2:Rh-LHCII compared to those of TiO2:Rh.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United Kingdom, AustraliaPublisher:Wiley Funded by:EC | Pod YieldEC| Pod YieldCaspar Chater; Caspar Chater; Umar Mohammed; Emily L. Harrison; Julie E. Gray; W. Paul Quick; Timothy Fulton; Timothy Fulton; Anindya Bandyopadhyay; Ranjan Swarup; Akshaya Kumar Biswal; Akshaya Kumar Biswal; Erik H. Murchie; Xiaojia Yin; Robert A. Coe; Robert A. Coe; Jacqueline Dionora; Robert S. Caine; Jennifer Sloan;Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/173091Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 384 citations 384 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/173091Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Oxford University Press (OUP) Funded by:UKRI | Nottingham-Rothamsted Doc..., UKRI | Exploiting night-time tra...UKRI| Nottingham-Rothamsted Doctoral Training Partnership ,UKRI| Exploiting night-time traits to improve wheat yield and water use efficiency in the warming climate of North-western MexicoKellie E Smith; Laura Cowan; Beth Taylor; Lorna McAusland; Matthew Heatley; Levi Yant; Erik H Murchie;Abstract Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 μmol m–2 s–1) and high light (HL: 350 μmol m–2 s–1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.
Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erad499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erad499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo;pmid: 22860982
ABSTRACTWheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ∼50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up‐regulating Calvin cycle enzymes, introducing chloroplast CO2 concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome‐wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2012.02588.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 479 citations 479 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2012.02588.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, FinlandPublisher:Elsevier BV Maxime Durand; Erik H. Murchie; Anders V. Lindfors; Otmar Urban; Pedro J. Aphalo; T. Matthew Robson;handle: 10138/336208
Abstract The sunlight received by plants is affected by cloudiness and pollution. Future changes in cloud cover will differ among regions, while aerosol concentrations are expected to continue increasing globally as a result of wildfires, fossil fuel combustion, and industrial pollution. Clouds and aerosols increase the diffuse fraction and modify the spectral composition of incident solar radiation, and both will affect photosynthesis and terrestrial ecosystem productivity. Thus, an assessment of how canopy and leaf-level processes respond to these changes is needed as part of accurately forecasting future global carbon assimilation. To review these processes and their implications: first, we discuss the physical basis of the effect of clouds and aerosols on solar radiation as it penetrates the atmosphere; second, we consider how direct and diffuse radiation are absorbed and transmitted by plant canopies and their leaves; and finally, we assess the consequences for photosynthesis at the canopy and ecosystem levels. Photobiology will be affected at the atmospheric level by a shift in spectral composition toward shorter or longer wavelengths under clouds or aerosols, respectively, due to different scattering. Changes in the microclimate and spectral composition of radiation due to an enhanced diffuse fraction also depend on the acclimation of canopy architectural and physiological traits, such as leaf area index, orientation, and clumping. Together with an enhancement of light-use efficiency, this makes the effect of diffuse solar radiation on canopy photosynthesis a multilayered phenomenon, requiring experimental testing to capture those complex interactions that will determine whether it produces the persistent enhancement in carbon assimilation that land-surface models currently predict.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Spain, SpainPublisher:Oxford University Press (OUP) Funded by:FCT | LA 1, UKRI | IWYP Call 2 - Speeding th..., UKRI | 15-IWYP -Wider and faster...FCT| LA 1 ,UKRI| IWYP Call 2 - Speeding the adjustment of photosynthesis to shade-sun transitions to increase yield potential in the field ,UKRI| 15-IWYP -Wider and faster: high-throughout phenotypic exploration of novel genetic variation for breeding high biomass and yield in wheatErik H Murchie; Matthew Reynolds; Gustavo A Slafer; M John Foulkes; Liana Acevedo-Siaca; Lorna McAusland; Robert Sharwood; Simon Griffiths; Richard B Flavell; Jeff Gwyn; Mark Sawkins; Elizabete Carmo-Silva;Abstract Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of ‘wiring diagrams’ has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Lancaster EPrints arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erac415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , External research report , Other literature type 2022 France, Netherlands, France, France, FrancePublisher:Zenodo Funded by:EC | CropBooster-PEC| CropBooster-PHarbinson, Jeremy; Klein Lankhorst, René; Murchie, Erik; Loreto, Francesco; Rolland, Norbert; Parry, Martin; Head, Ritchie; Dever, Louisa;The realisation of the full objectives of international policies targeting global food security and climate change mitigation, including the European Green Deal, United Nation’s Sustainable Development Goals (SDGs), the Paris Climate Agreement COP21 and transition away from a fossil-carbon industrial base to one that is more bio-based, requires that we (i) sustainably increase the yield, nutritional quality, and biodiversity of major crop species, (ii) select climate-ready crops that are adapted to future weather dynamic and (iii) increase the resource use efficiency of crops to preserve natural resources, such as fresh water and phosphate and reducing the environmental burden arising from the application of nitrogenous fertiliser. Advanced scientific knowledge and tools for research and crop breeding already provide an excellent platform to build on. A long-term Strategic Research Agenda now needs to be agreed and priorities set to deliver blueprints for climate resilient future-proofed crops. This strategy should then be implemented through an innovative collaborative approach that combines the joint knowledge base of the research and industrial communities, with multi-stakeholder involvement and strong support from policy makers. This white paper has been compiled from contributions from several experts across the field of plant sciences. The CropBooster-P project has developed this strategic research agenda for a crop improvement programme that will provide the genetic innovation to improve and future proof our crop plants. It builds a strong collaboration between plant scientists and modellers, physicists, soil scientists, engineers and coders, biomathematicians, agronomists, plant breeders and farmers. The goal is to exploit the largely untapped genetic diversity that exists within the wild relatives and ancient and heirloom varieties of our crop plants to improve our crops so they will be more resilient, high yielding, resource efficient, nutritious, and ready for the future climate of Europe. The knowledge and technology to reach this goal springs from the transformative developments that have occurred in the last 20 years in genomics, phenomics, crop sciences, molecular plant sciences, agronomy, and plant breeding.
ZENODO arrow_drop_down Wageningen Staff PublicationsExternal research report . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAReport . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7457521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 41 Powered bymore_vert ZENODO arrow_drop_down Wageningen Staff PublicationsExternal research report . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAReport . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7457521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Oxford University Press (OUP) Funded by:UKRI | The 4-dimensional plant: ...UKRI| The 4-dimensional plant: enhanced mechanical canopy excitation for improved crop performancePracha Tree-Intong; Sean Mayes; John N. Ferguson; John N. Ferguson; Sophie B Cowling; Hamidreza Soltani; Ranjan Swarup; Erik H. Murchie;Abstract African rice (Oryza glaberrima) has adapted to challenging environments and is a promising source of genetic variation. We analysed dynamics of photosynthesis and morphology in a reference set of 155 O. glaberrima accessions. Plants were grown in an agronomy glasshouse to late tillering stage. Photosynthesis induction from darkness and the decrease in low light was measured by gas exchange and chlorophyll fluorescence along with root and shoot biomass, stomatal density, and leaf area. Steady-state and kinetic responses were modelled. We describe extensive natural variation in O. glaberrima for steady-state, induction, and reduction responses of photosynthesis that has value for gene discovery and crop improvement. Principal component analyses indicated key clusters of plant biomass, kinetics of photosynthesis (CO2 assimilation, A), and photoprotection induction and reduction (measured by non-photochemical quenching, NPQ), consistent with diverse adaptation. Accessions also clustered according to countries with differing water availability, stomatal conductance (gs), A, and NPQ, indicating that dynamic photosynthesis has adaptive value in O. glaberrima. Kinetics of NPQ, A, and gs showed high correlation with biomass and leaf area. We conclude that dynamic photosynthetic traits and NPQ are important within O. glaberrima, and we highlight NPQ kinetics and NPQ under low light.
University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erab459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Rumiana V. Ray; Erik H. Murchie; Olubukola O. Ajigboye;pmid: 25175650
A range of fungicides including epoxiconazole, azoxystrobin and isopyrazam, were applied to winter wheat at GS 31/32 to determine their effect on photosystem II (PSII) efficiency, biomass and yield. Frequent, repeated measurements of chlorophyll fluorescence were carried on plants grown under different water regimes in controlled environment and in the field to establish the transiency of fluorescence changes in relation to fungicide application. Application of the succinate dehydrogenase inhibitor isopyrazam in a mixture with the triazole epoxiconazole increased PSII efficiency associated with a 28% increase in biomass in the controlled environment and 4% increase in grain yield in the field in the absence of disease pressure. Application of isopyrazam and epoxiconazole increased efficiency of PSII photochemistry (Fv'/Fm') as early as 4h following application associated with improved photosynthetic gas exchange and increased rates of electron transport. We reveal a strong, positive relationship between Fv'/Fm' and CO2 assimilation rate, stomatal conductance and transpiration rate in controlled environment and Fv'/Fm' detected just after anthesis on the flag leaf at GS 73 and grain yield in field. We conclude that application of a specific combination of fungicides with positive effects of plant physiology in the absence of disease pressure results in enhanced biomass and yield in winter wheat. Additionally, an accurate and frequent assessment of photosynthetic efficiency of winter wheat plants can be used to predict yield and biomass in the field.
Pesticide Biochemist... arrow_drop_down Pesticide Biochemistry and PhysiologyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pestbp.2014.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pesticide Biochemist... arrow_drop_down Pesticide Biochemistry and PhysiologyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pestbp.2014.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2022Embargo end date: 28 Jan 2022 France, France, France, Netherlands, Belgium, Denmark, United Kingdom, United Kingdom, United Kingdom, France, FrancePublisher:Wiley Funded by:EC | CropBooster-PEC| CropBooster-PGojon, Alain; Nussaume, Laurent; Luu, Doan T.; Murchie, Erik H.; Baekelandt, Alexandra; Rodrigues Saltenis, Vandasue Lily; Cohan, Jean‐Pierre; Desnos, Thierry; Inzé, Dirk; Ferguson, John N.; Guiderdonni, Emmanuel; Krapp, Anne; Klein Lankhorst, René; Maurel, Christophe; Rouached, Hatem; Parry, Martin A. J.; Pribil, Mathias; Scharff, Lars B.; Nacry, Philippe;handle: 1854/LU-8739897
AbstractPlant scientists and farmers are facing major challenges in providing food and nutritional security for a growing population, while preserving natural resources and biodiversity. Moreover, this should be done while adapting agriculture to climate change and by reducing its carbon footprint. To address these challenges, there is an urgent need to breed crops that are more resilient to suboptimal environments. Huge progress has recently been made in understanding the physiological, genetic and molecular bases of plant nutrition and environmental responses, paving the way towards a more sustainable agriculture. In this review, we present an overview of these progresses and strategies that could be developed to increase plant nutrient use efficiency and tolerance to abiotic stresses. As illustrated by many examples, they already led to promising achievements and crop improvements. Here, we focus on nitrogen and phosphate uptake and use efficiency and on adaptation to drought, salinity and heat stress. These examples first show the necessity of deepening our physiological and molecular understanding of plant environmental responses. In particular, more attention should be paid to investigate stress combinations and stress recovery and acclimation that have been largely neglected to date. It will be necessary to extend these approaches from model plants to crops, to unravel the relevant molecular targets of biotechnological or genetic strategies directly in these species. Similarly, sustained efforts should be done for further exploring the genetic resources available in these species, as well as in wild species adapted to unfavourable environments. Finally, technological developments will be required to breed crops that are more resilient and efficient. This especially relates to the development of multiscale phenotyping under field conditions and a wide range of environments, and use of modelling and big data management to handle the huge amount of information provided by the new molecular, genetic and phenotyping techniques.
Food and Energy Secu... arrow_drop_down University of Essex Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03605663Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsFood and Energy SecurityArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyLancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down University of Essex Research RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03605663Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsFood and Energy SecurityArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyLancaster University: Lancaster EprintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Chien-Wei Lee; Rea Antoniou Kourounioti; Jeffrey C.S. Wu; Erik Murchie; Mercedes Maroto-Valer; Oliver E. Jensen; Chao-Wei Huang; Alexander Ruban;Abstract Photocatalytic reduction of CO2 into valuable hydrocarbons using TiO2 is a promising route for mitigating the effects of global warming and meeting future energy demands. However, TiO2 utilises UV light for photocatalysis and its hydrocarbon yields are still low. In order to enhance the light absorption and increase yields, light-harvesting complexes (LHCII) extracted from spinach were attached to the surface of Rh-doped TiO2 (TiO2:Rh) resulting in a hybrid catalyst, TiO2:Rh-LHCII. The LHCII can absorb visible light in green plants, which convert CO2 to sugars via photosynthesis. CO, acetaldehyde and methyl formate were produced from aqueous CO2 solution in a stirred batch reactor under visible-light irradiation. The yields of acetaldehyde and methyl formate were enhanced by almost ten and four times respectively, when using TiO2:Rh-LHCII compared to those of TiO2:Rh.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United Kingdom, AustraliaPublisher:Wiley Funded by:EC | Pod YieldEC| Pod YieldCaspar Chater; Caspar Chater; Umar Mohammed; Emily L. Harrison; Julie E. Gray; W. Paul Quick; Timothy Fulton; Timothy Fulton; Anindya Bandyopadhyay; Ranjan Swarup; Akshaya Kumar Biswal; Akshaya Kumar Biswal; Erik H. Murchie; Xiaojia Yin; Robert A. Coe; Robert A. Coe; Jacqueline Dionora; Robert S. Caine; Jennifer Sloan;Summary Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high‐yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/173091Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 384 citations 384 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/173091Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Oxford University Press (OUP) Funded by:UKRI | Nottingham-Rothamsted Doc..., UKRI | Exploiting night-time tra...UKRI| Nottingham-Rothamsted Doctoral Training Partnership ,UKRI| Exploiting night-time traits to improve wheat yield and water use efficiency in the warming climate of North-western MexicoKellie E Smith; Laura Cowan; Beth Taylor; Lorna McAusland; Matthew Heatley; Levi Yant; Erik H Murchie;Abstract Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 μmol m–2 s–1) and high light (HL: 350 μmol m–2 s–1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.
Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erad499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental BotanyArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erad499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo;pmid: 22860982
ABSTRACTWheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ∼50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up‐regulating Calvin cycle enzymes, introducing chloroplast CO2 concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome‐wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2012.02588.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 479 citations 479 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2012.02588.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, FinlandPublisher:Elsevier BV Maxime Durand; Erik H. Murchie; Anders V. Lindfors; Otmar Urban; Pedro J. Aphalo; T. Matthew Robson;handle: 10138/336208
Abstract The sunlight received by plants is affected by cloudiness and pollution. Future changes in cloud cover will differ among regions, while aerosol concentrations are expected to continue increasing globally as a result of wildfires, fossil fuel combustion, and industrial pollution. Clouds and aerosols increase the diffuse fraction and modify the spectral composition of incident solar radiation, and both will affect photosynthesis and terrestrial ecosystem productivity. Thus, an assessment of how canopy and leaf-level processes respond to these changes is needed as part of accurately forecasting future global carbon assimilation. To review these processes and their implications: first, we discuss the physical basis of the effect of clouds and aerosols on solar radiation as it penetrates the atmosphere; second, we consider how direct and diffuse radiation are absorbed and transmitted by plant canopies and their leaves; and finally, we assess the consequences for photosynthesis at the canopy and ecosystem levels. Photobiology will be affected at the atmospheric level by a shift in spectral composition toward shorter or longer wavelengths under clouds or aerosols, respectively, due to different scattering. Changes in the microclimate and spectral composition of radiation due to an enhanced diffuse fraction also depend on the acclimation of canopy architectural and physiological traits, such as leaf area index, orientation, and clumping. Together with an enhancement of light-use efficiency, this makes the effect of diffuse solar radiation on canopy photosynthesis a multilayered phenomenon, requiring experimental testing to capture those complex interactions that will determine whether it produces the persistent enhancement in carbon assimilation that land-surface models currently predict.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2021.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu