- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Jul 2023 France, Italy, Germany, Denmark, United States, France, New Zealand, Spain, Denmark, Czech Republic, Czech Republic, Switzerland, New ZealandPublisher:Springer Science and Business Media LLC Funded by:SNSF | ICOS-CH: Integrated Carbo..., SNSF | Robust models for assessi..., NSF | BII-Implementation: The c... +4 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,SNSF| ICOS-CH Phase 3 ,EC| USMILE ,SNSF| ICOS-CH Phase 2 ,EC| TERRAFORMUlisse Gomarasca; Mirco Migliavacca; Jens Kattge; Jacob A. Nelson; Ülo Niinemets; Christian Wirth; Alessandro Cescatti; Michael Bahn; Richard Nair; Alicia T. R. Acosta; M. Altaf Arain; Mirela Beloiu; T. Andrew Black; Hans Henrik Bruun; Solveig Franziska Bucher; Nina Buchmann; Chaeho Byun; Arnaud Carrara; Adriano Conte; Ana C. da Silva; Gregory Duveiller; Silvano Fares; Andreas Ibrom; Alexander Knohl; Benjamin Komac; Jean-Marc Limousin; Christopher H. Lusk; Miguel D. Mahecha; David Martini; Vanessa Minden; Leonardo Montagnani; Akira S. Mori; Yusuke Onoda; Josep Peñuelas; Oscar Perez-Priego; Peter Poschlod; Thomas L. Powell; Peter B. Reich; Ladislav Šigut; Peter M. van Bodegom; Sophia Walther; Georg Wohlfahrt; Ian J. Wright; Markus Reichstein;pmid: 37402725
pmc: PMC10319885
AbstractFundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACT, AKA | Methane uptake by permafr..., AKA | When ancient meets modern... +2 projectsEC| INTERACT ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSERC ,AKA| A combined experiment and modelling approach to quantify the nitrous oxide budget of permafrost regions (N-PERM)Authors: Carolina Voigt; Anna-Maria Virkkala; Gabriel Hould Gosselin; Kathryn A. Bennett; +18 AuthorsCarolina Voigt; Anna-Maria Virkkala; Gabriel Hould Gosselin; Kathryn A. Bennett; T. Andrew Black; Matteo Detto; Charles Chevrier-Dion; Georg Guggenberger; Wasi Hashmi; Lukas Kohl; Dan Kou; Charlotte Marquis; Philip Marsh; Maija E. Marushchak; Zoran Nesic; Hannu Nykänen; Taija Saarela; Leopold Sauheitl; Branden Walker; Niels Weiss; Evan J. Wilcox; Oliver Sonnentag;AbstractArctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2023License: CC BYFull-Text: https://doi.org/10.1038/s41558-023-01785-3Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2023 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01785-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2023License: CC BYFull-Text: https://doi.org/10.1038/s41558-023-01785-3Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2023 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01785-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Jul 2023 France, Italy, Germany, Denmark, United States, France, New Zealand, Spain, Denmark, Czech Republic, Czech Republic, Switzerland, New ZealandPublisher:Springer Science and Business Media LLC Funded by:SNSF | ICOS-CH: Integrated Carbo..., SNSF | Robust models for assessi..., NSF | BII-Implementation: The c... +4 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,SNSF| ICOS-CH Phase 3 ,EC| USMILE ,SNSF| ICOS-CH Phase 2 ,EC| TERRAFORMUlisse Gomarasca; Mirco Migliavacca; Jens Kattge; Jacob A. Nelson; Ülo Niinemets; Christian Wirth; Alessandro Cescatti; Michael Bahn; Richard Nair; Alicia T. R. Acosta; M. Altaf Arain; Mirela Beloiu; T. Andrew Black; Hans Henrik Bruun; Solveig Franziska Bucher; Nina Buchmann; Chaeho Byun; Arnaud Carrara; Adriano Conte; Ana C. da Silva; Gregory Duveiller; Silvano Fares; Andreas Ibrom; Alexander Knohl; Benjamin Komac; Jean-Marc Limousin; Christopher H. Lusk; Miguel D. Mahecha; David Martini; Vanessa Minden; Leonardo Montagnani; Akira S. Mori; Yusuke Onoda; Josep Peñuelas; Oscar Perez-Priego; Peter Poschlod; Thomas L. Powell; Peter B. Reich; Ladislav Šigut; Peter M. van Bodegom; Sophia Walther; Georg Wohlfahrt; Ian J. Wright; Markus Reichstein;pmid: 37402725
pmc: PMC10319885
AbstractFundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACT, AKA | Methane uptake by permafr..., AKA | When ancient meets modern... +2 projectsEC| INTERACT ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSERC ,AKA| A combined experiment and modelling approach to quantify the nitrous oxide budget of permafrost regions (N-PERM)Authors: Carolina Voigt; Anna-Maria Virkkala; Gabriel Hould Gosselin; Kathryn A. Bennett; +18 AuthorsCarolina Voigt; Anna-Maria Virkkala; Gabriel Hould Gosselin; Kathryn A. Bennett; T. Andrew Black; Matteo Detto; Charles Chevrier-Dion; Georg Guggenberger; Wasi Hashmi; Lukas Kohl; Dan Kou; Charlotte Marquis; Philip Marsh; Maija E. Marushchak; Zoran Nesic; Hannu Nykänen; Taija Saarela; Leopold Sauheitl; Branden Walker; Niels Weiss; Evan J. Wilcox; Oliver Sonnentag;AbstractArctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2023License: CC BYFull-Text: https://doi.org/10.1038/s41558-023-01785-3Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2023 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01785-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2023License: CC BYFull-Text: https://doi.org/10.1038/s41558-023-01785-3Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2023 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01785-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu