- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Qiuping Wu; Linghong Ke; Jida Wang; Tamlin M. Pavelsky; George H. Allen; Yongwei Sheng; Xuejun Duan; Yunqiang Zhu; Jin Wu; Lei Wang; Kai Liu; Cheng Tan; Wensong Zhang; Chenyu Fan; Bin Yong; Chunqiao Song;AbstractRivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Qiuping Wu; Linghong Ke; Jida Wang; Tamlin M. Pavelsky; George H. Allen; Yongwei Sheng; Xuejun Duan; Yunqiang Zhu; Jin Wu; Lei Wang; Kai Liu; Cheng Tan; Wensong Zhang; Chenyu Fan; Bin Yong; Chunqiao Song;AbstractRivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Qianhan Wu; Kai Liu; Chunqiao Song; Jida Wang; Linghong Ke; Ronghua Ma; Wensong Zhang; Hang Pan; Xinyuan Deng;doi: 10.3390/su10113851
In order to satisfy the needs of constant economic growth, the pressure to exploit natural resources has been increasing rapidly in China. Particularly with the implementation of the National Western Development Strategies since 1999, more and more mining activities and related infrastructure constructions have been conducted on the Tibetan Plateau (TP). Mining activities are known to have substantial impacts on plant dynamics and hence the water and energy cycles. Identifying mining activities and quantifying their effects on vegetation cover are critical to the monitoring and protection of the pristine TP environment. Thus, this study aims to develop an automated approach that detects the timing of initial mining development and assess the spatial distribution of mining-ruined vegetation. The Breaks for Additive Seasonal and Trend (BFAST) algorithm was used to decompose the signal in the normalized difference vegetation index (NDVI) time series derived from high-frequency MODIS images, and to detect abrupt changes of surface vegetation. Results show that the BFAST algorithm is able to effectively identify abrupt changes in vegetation cover as a result of open-mining development on the studied alpine grassland. The testing study in Muli Town of Qinghai Province shows that the mining development began in 2003 and massive destructions of vegetation cover followed between 2008 and 2012. The integrated use of Landsat imagery and multi-temporal DEMs further reveals detailed areal and volumetric changes in the mining site. This study demonstrates the potential of applying multi-mission satellite datasets to assess large-scale environmental influences from mining development, and will be beneficial to environmental conservation and sustainable use of natural resources in remote regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Qianhan Wu; Kai Liu; Chunqiao Song; Jida Wang; Linghong Ke; Ronghua Ma; Wensong Zhang; Hang Pan; Xinyuan Deng;doi: 10.3390/su10113851
In order to satisfy the needs of constant economic growth, the pressure to exploit natural resources has been increasing rapidly in China. Particularly with the implementation of the National Western Development Strategies since 1999, more and more mining activities and related infrastructure constructions have been conducted on the Tibetan Plateau (TP). Mining activities are known to have substantial impacts on plant dynamics and hence the water and energy cycles. Identifying mining activities and quantifying their effects on vegetation cover are critical to the monitoring and protection of the pristine TP environment. Thus, this study aims to develop an automated approach that detects the timing of initial mining development and assess the spatial distribution of mining-ruined vegetation. The Breaks for Additive Seasonal and Trend (BFAST) algorithm was used to decompose the signal in the normalized difference vegetation index (NDVI) time series derived from high-frequency MODIS images, and to detect abrupt changes of surface vegetation. Results show that the BFAST algorithm is able to effectively identify abrupt changes in vegetation cover as a result of open-mining development on the studied alpine grassland. The testing study in Muli Town of Qinghai Province shows that the mining development began in 2003 and massive destructions of vegetation cover followed between 2008 and 2012. The integrated use of Landsat imagery and multi-temporal DEMs further reveals detailed areal and volumetric changes in the mining site. This study demonstrates the potential of applying multi-mission satellite datasets to assess large-scale environmental influences from mining development, and will be beneficial to environmental conservation and sustainable use of natural resources in remote regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Qiuping Wu; Linghong Ke; Jida Wang; Tamlin M. Pavelsky; George H. Allen; Yongwei Sheng; Xuejun Duan; Yunqiang Zhu; Jin Wu; Lei Wang; Kai Liu; Cheng Tan; Wensong Zhang; Chenyu Fan; Bin Yong; Chunqiao Song;AbstractRivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Qiuping Wu; Linghong Ke; Jida Wang; Tamlin M. Pavelsky; George H. Allen; Yongwei Sheng; Xuejun Duan; Yunqiang Zhu; Jin Wu; Lei Wang; Kai Liu; Cheng Tan; Wensong Zhang; Chenyu Fan; Bin Yong; Chunqiao Song;AbstractRivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-37061-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Qianhan Wu; Kai Liu; Chunqiao Song; Jida Wang; Linghong Ke; Ronghua Ma; Wensong Zhang; Hang Pan; Xinyuan Deng;doi: 10.3390/su10113851
In order to satisfy the needs of constant economic growth, the pressure to exploit natural resources has been increasing rapidly in China. Particularly with the implementation of the National Western Development Strategies since 1999, more and more mining activities and related infrastructure constructions have been conducted on the Tibetan Plateau (TP). Mining activities are known to have substantial impacts on plant dynamics and hence the water and energy cycles. Identifying mining activities and quantifying their effects on vegetation cover are critical to the monitoring and protection of the pristine TP environment. Thus, this study aims to develop an automated approach that detects the timing of initial mining development and assess the spatial distribution of mining-ruined vegetation. The Breaks for Additive Seasonal and Trend (BFAST) algorithm was used to decompose the signal in the normalized difference vegetation index (NDVI) time series derived from high-frequency MODIS images, and to detect abrupt changes of surface vegetation. Results show that the BFAST algorithm is able to effectively identify abrupt changes in vegetation cover as a result of open-mining development on the studied alpine grassland. The testing study in Muli Town of Qinghai Province shows that the mining development began in 2003 and massive destructions of vegetation cover followed between 2008 and 2012. The integrated use of Landsat imagery and multi-temporal DEMs further reveals detailed areal and volumetric changes in the mining site. This study demonstrates the potential of applying multi-mission satellite datasets to assess large-scale environmental influences from mining development, and will be beneficial to environmental conservation and sustainable use of natural resources in remote regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Qianhan Wu; Kai Liu; Chunqiao Song; Jida Wang; Linghong Ke; Ronghua Ma; Wensong Zhang; Hang Pan; Xinyuan Deng;doi: 10.3390/su10113851
In order to satisfy the needs of constant economic growth, the pressure to exploit natural resources has been increasing rapidly in China. Particularly with the implementation of the National Western Development Strategies since 1999, more and more mining activities and related infrastructure constructions have been conducted on the Tibetan Plateau (TP). Mining activities are known to have substantial impacts on plant dynamics and hence the water and energy cycles. Identifying mining activities and quantifying their effects on vegetation cover are critical to the monitoring and protection of the pristine TP environment. Thus, this study aims to develop an automated approach that detects the timing of initial mining development and assess the spatial distribution of mining-ruined vegetation. The Breaks for Additive Seasonal and Trend (BFAST) algorithm was used to decompose the signal in the normalized difference vegetation index (NDVI) time series derived from high-frequency MODIS images, and to detect abrupt changes of surface vegetation. Results show that the BFAST algorithm is able to effectively identify abrupt changes in vegetation cover as a result of open-mining development on the studied alpine grassland. The testing study in Muli Town of Qinghai Province shows that the mining development began in 2003 and massive destructions of vegetation cover followed between 2008 and 2012. The integrated use of Landsat imagery and multi-temporal DEMs further reveals detailed areal and volumetric changes in the mining site. This study demonstrates the potential of applying multi-mission satellite datasets to assess large-scale environmental influences from mining development, and will be beneficial to environmental conservation and sustainable use of natural resources in remote regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/3851/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10113851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu