- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Methane and nitrous oxide...ARC| Methane and nitrous oxide emissions from sewers _ understanding, modelling and mitigationLiu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo;AbstractMethane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions and revealed substantial and highly dynamic methane concentrations in sewer air.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), China (People's Republic of), AustraliaPublisher:Informa UK Limited Authors: Liu, Y.; Zhang, Y.; Xu, J.; Yuan, Z.;To improve enzymatic digestibility and sugar concentration, sweet sorghum bagasse was pretreated with alkali and liquid hot water, and then subjected to fed-batch enzymatic hydrolysis. Scanning electron microscopy assay suggested that different pretreatment methods resulted in different composition and structure of residues; these changes had a significant influence on cellulose hydrolysis. Fresh substrate was pretreated and then added at different amounts during the first 48 h to yield a final dry matter content of 30% (w/v). For liquid hot water pretreatment, a maximal glucose concentration of 95.71 g/L, corresponding to 52.85% xylan removal, was obtained with the sweet sorghum bagasse pretreated at 184°C for 18 min. NaOH soaking at ambient conditions removed lignin up to 60%, and the subsequent hydrolysis with cellulase loading of less than 10 FPU/g DM, and substrate supplementation every few hours yield the high glucose and xylose concentrations of 114.89L and 29.93 g/L, respectively after 144 h.
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2016 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2012.745036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2016 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2012.745036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Funded by:EC | NITRI-GHGEC| NITRI-GHGAuthors: Liu Ye; Zhiguo Yuan; Maite Pijuan; Maite Pijuan;pmid: 23313766
In this study, the effect of nitrite/FNA on the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) is investigated. The results clearly show that FNA has a detrimental effect on the acetate uptake rate by both PAOs and GAOs, but this adverse effect is much stronger on PAOs than on GAOs. Also, when FNA was increased, phosphate release to acetate uptake ratio by PAOs increased substantially (250-300% compared to control), which was accompanied by decreases (40-60%) in glycogen degradation and PHA production to VFA uptake. In contrast, these ratios for GAOs remained constant or increased slightly towards the highest FNA concentration applied. These results indicate that the anaerobic metabolism of PAOs is more adversely affected than that of GAOs when FNA is present. This might provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal systems when nitrite is present.
Bioresource Technolo... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.11.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.11.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Acidic pH has previously been found to increase nitrous oxide (N₂O) accumulation during heterotrophic denitrification in biological wastewater treatment. However, the mechanism of this phenomenon still needs to be clarified. By using an enriched methanol utilizing denitrifying culture as an example, this paper presents a comprehensive study on the effect of pH (6.0-9.0) on N₂O reduction kinetics with N₂O as the sole electron acceptor, as well as the effect of pH on N₂O accumulation with N₂O as an intermediate of nitrate reduction. The pH dependency of nitrate and nitrite reduction was also investigated. The maximum biomass-specificN₂O reduction rate is higher than the corresponding maximum nitrate and nitrite reduction rates in the entire pH range studied. However, the maximum biomass-specific N₂O reduction rate is much more sensitive to pH variation outside of the optimal range (pH 7.5 to pH 8.0) than the maximum biomass-specific nitrate and nitrite reduction rates. The half-saturation coefficient of the N₂O reductase increased from 0.10 mg N₂O-N/L to 0.92 mg N₂O-N/L as pH increased from pH 6.0 to 9.0. At pH 6.0, approximately 20% and 40% of the denitrified nitrate accumulated as N₂O in the presence and absence of methanol (as an exogenous carbon source), respectively. However, at pH 6.5, these fractions decreased to 0% and 30%, respectively. No N₂O accumulation occurred at pH 7.0 to 9.0 independent of the availability of methanol. These results suggest that the competition for electrons among different nitrogen oxides reductases likely plays a role in N₂O accumulation at low pH conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=22749904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=22749904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo;pmid: 21803396
One of the main challenging issues for the aerobic granular sludge technology is the long startup time when dealing with real wastewaters. This study presents a novel strategy to reduce the time required for granulation while ensuring a high level of nutrient removal. This new approach consists of seeding the reactor with a mixture of crushed aerobic granules and floccular sludge. The effectiveness of the strategy was demonstrated using abattoir wastewater, containing nitrogen and phosphorus at approximately 250 mgN/L and 30 mgP/L, respectively. Seven different mixtures of crushed granules and floccular sludge at granular sludge fractions (w/w in dry mass) of 0%, 5%, 10%, 15%, 25%, 30% and 50% were used to start eight granulation processes. The granulation time (defined as the time when the 10th percentile bacterial aggregate size is larger than 200 μm) displayed a strong dependency on the fraction of granular sludge. The shortest granulation time of 18 days was obtained with 50% crushed granules, in comparison with 133 days with 5% crushed granules. Full granulation was not achieved in the two trials without seeding with crushed granules. In contrast to the 100% floccular sludge cases, where a substantial loss of biomass occurred during granulation, the biomass concentration in all other trails did not decrease during granulation. This allowed that good nitrogen removal was maintained in all the reactors during the granulation process. However, enhanced biological phosphorus removal was achieved in only one of the eight trials. This was likely due to the temporary accumulation of nitrite, a strong inhibitor of polyphosphate accumulating organisms.
Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2011.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2011.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Wiley Authors: Steven Pratt; Steven Pratt; Jurg Keller; Zhiguo Yuan;doi: 10.1002/bit.20199
pmid: 15449301
AbstractA method for detailed investigation of aerobic carbon degradation processes by microorganisms is presented. The method relies on an integrated use of the respirometric, titrimetric, and off‐gas CO2 measurements. The oxygen uptake rate (OUR), hydrogen ion production rate (HPR), and the carbon dioxide transfer rate (CTR) resulting from the biological as well as physicochemical processes, coupled with a metabolic model characterizing both the growth and carbon storage processes, enables the comprehensive study of the carbon degradation processes. The method allows the formation of carbon storage products and the biomass growth rates to be estimated without requiring any off‐line biomass or liquid‐phase measurements, although the practical identifiability of the system could be improved with additional measurements. Furthermore, the combined yield for biomass growth and carbon storage is identifiable, along with the affinity constant with respect to the carbon substrate. However, the individual yields for growth and carbon storage are not identifiable without further knowledge about the metabolic pathways employed by the microorganisms in the carbon conversion. This is true even when more process variables are measured. The method is applied to the aerobic carbon substrate degradation by a full‐scale sludge using acetate as an example carbon source. The sludge was able to quickly take up the substrate and store it as poly‐β‐hydroxybutyrate (PHB). The PHB formation rate was a few times faster than the biomass growth rate, which was confirmed by off‐line liquid‐ and solid‐phase analysis. The estimated combined yield for biomass growth and carbon storage compared closely to that determined from the theoretical yields reported in literature based on thermodynamics. This suggests that the theoretical yields may be used as default parameters for modeling purposes. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:American Chemical Society (ACS) Wang, Qilin; Ye, Liu; Jiang, Guangming; Jensen, Paul D.; Batstone, Damien J.; Yuan, Zhiguo;doi: 10.1021/es402933b
pmid: 24041014
Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.
Environmental Scienc... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es402933b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es402933b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Yong Qiu; Yizhen Zhang; Yanchen Liu; Bing Li; Zhiguo Yuan; Zhiguo Yuan; Xia Huang; Hongtao Pang; Yu Xue; Chi Zhang;Abstract Influent concentration and effluent standards have strong impacts on technology selection by wastewater treatment plants (WWTPs) and on resource recovery processes. In this paper, resource recovery simulation scenarios incorporated with conventional WWTP models were designed in an imitation of typical existing facilities. We integrated economic analysis and a life cycle assessment to evaluate the impacts of treatment technologies selected for different influent conditions and effluent standards. The results revealed that high concentration influents required the most complicated treatment processes to meet a strict effluent standard. The pattern of total impacts was strongly dependent on the influent conditions. High concentration influent was found to correlate with low energy consumption, low costs, a high nutrient recovery potential but also a high global warming potential when removing 1 kg of pollutants. The incorporation of resource recovery improved the overall performance of WWTPs; however, low concentration influents were not suitable for resource recovery due to their limited benefits. The strict effluent standard limited the resource recovery potential from wastewater, and a loose effluent standard may improve the resource recovery performance, especially for high concentration influents.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2019.104562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2019.104562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:IWA Publishing Lavallee, B.; Frigon, D; Lessard, P.; Vanrollengham, P.A.; Yuan, Zhiguo; van Loosdrecht, M.C.M.;doi: 10.2166/wst.2009.592
pmid: 19237760
Models currently used have been developed to describe the storage response in the activated sludge process. In these models the distribution of the substrate flux between growth and storage is an empirical function. rRNA-structured biomass models are proposed to describe the metabolic status of cells in view of predicting the growth response (dμ/dt) of cells in activated sludge process. The autocatalytic reaction rate of the synthesis of the PSS component (rRNA) can provide a mechanistic explanation for the growth response and the growth lag phase. The proposed models were able to describe and predict properly the growth response of the biomass in various types of reactor. Such models could be more widely applicable by using intrinsic model parameters. This would be a key improvement for as it would lead to improved models for design.
Water Science and Te... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2009.592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water Science and Te... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2009.592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Elsevier BV Authors: Vadivelu, Vel M.; Keller, Jurg; Yuan, Zhiguo;pmid: 17224173
The inhibitory effect of free ammonia (FA;NH(3)) on the metabolism of Nitrobacter is investigated using a method that allows decoupling energy generation from growth processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of Nitrobacter. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population in the reactor was Nitrobacter, while no Nitrospira was detected. Batch tests were carried out to measure the oxygen uptake rate (OUR) by the culture at various FA levels, in the presence (OUR with CO(2)) or absence (OUR without CO(2)) of inorganic carbon (CO(2), HCO(3)(-) and CO(3)(2-)). The FA inhibition on the respiration initiated at below 1mgNH(3)-NL(-1) in both cases. OUR without CO(2) gradually decreased by 12% when the FA concentration increased from 0 to approximately 4mgNH(3)-NL(-1) and remained at the same level till an FA level of 9mgNH(3)-NL(-1) (the highest FA concentration applied in this study). This indicates that FA has a limited inhibitory effect on the respiratory capability of Nitrobacter. Starting from a level that is 15% higher than OUR without CO(2) when no FA was present, OUR with CO(2)decreased more rapidly than OUR without CO(2) reaching the same level as OUR without CO(2) when FA was between 6-9mgNH(3)-NL(-1). This implies that in this range of FA the presence of inorganic carbon did not cause any increase in the respiration activity of Nitrobacter. The results suggest that, while still oxidizing nitrite at approximately 75% of the non-inhibited rate, Nitrobacter likely ceased to grow at an FA level of above 6mgNH(3)-NL(-1). While the real mechanisms remain to be identified, this study indicates that the FA inhibition on Nitrobacter is likely much more serious than suggested by previous studies where OUR with CO(2) (or the equivalent nitrite oxidation rate) was used as the sole measure of the inhibitory effects.
Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2006.11.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 199 citations 199 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2006.11.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Methane and nitrous oxide...ARC| Methane and nitrous oxide emissions from sewers _ understanding, modelling and mitigationLiu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo;AbstractMethane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions and revealed substantial and highly dynamic methane concentrations in sewer air.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep06637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), China (People's Republic of), AustraliaPublisher:Informa UK Limited Authors: Liu, Y.; Zhang, Y.; Xu, J.; Yuan, Z.;To improve enzymatic digestibility and sugar concentration, sweet sorghum bagasse was pretreated with alkali and liquid hot water, and then subjected to fed-batch enzymatic hydrolysis. Scanning electron microscopy assay suggested that different pretreatment methods resulted in different composition and structure of residues; these changes had a significant influence on cellulose hydrolysis. Fresh substrate was pretreated and then added at different amounts during the first 48 h to yield a final dry matter content of 30% (w/v). For liquid hot water pretreatment, a maximal glucose concentration of 95.71 g/L, corresponding to 52.85% xylan removal, was obtained with the sweet sorghum bagasse pretreated at 184°C for 18 min. NaOH soaking at ambient conditions removed lignin up to 60%, and the subsequent hydrolysis with cellulase loading of less than 10 FPU/g DM, and substrate supplementation every few hours yield the high glucose and xylose concentrations of 114.89L and 29.93 g/L, respectively after 144 h.
Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2016 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2012.745036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Sources Part ... arrow_drop_down Energy Sources Part A Recovery Utilization and Environmental EffectsArticle . 2016 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567036.2012.745036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Funded by:EC | NITRI-GHGEC| NITRI-GHGAuthors: Liu Ye; Zhiguo Yuan; Maite Pijuan; Maite Pijuan;pmid: 23313766
In this study, the effect of nitrite/FNA on the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) is investigated. The results clearly show that FNA has a detrimental effect on the acetate uptake rate by both PAOs and GAOs, but this adverse effect is much stronger on PAOs than on GAOs. Also, when FNA was increased, phosphate release to acetate uptake ratio by PAOs increased substantially (250-300% compared to control), which was accompanied by decreases (40-60%) in glycogen degradation and PHA production to VFA uptake. In contrast, these ratios for GAOs remained constant or increased slightly towards the highest FNA concentration applied. These results indicate that the anaerobic metabolism of PAOs is more adversely affected than that of GAOs when FNA is present. This might provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal systems when nitrite is present.
Bioresource Technolo... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.11.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.11.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Acidic pH has previously been found to increase nitrous oxide (N₂O) accumulation during heterotrophic denitrification in biological wastewater treatment. However, the mechanism of this phenomenon still needs to be clarified. By using an enriched methanol utilizing denitrifying culture as an example, this paper presents a comprehensive study on the effect of pH (6.0-9.0) on N₂O reduction kinetics with N₂O as the sole electron acceptor, as well as the effect of pH on N₂O accumulation with N₂O as an intermediate of nitrate reduction. The pH dependency of nitrate and nitrite reduction was also investigated. The maximum biomass-specificN₂O reduction rate is higher than the corresponding maximum nitrate and nitrite reduction rates in the entire pH range studied. However, the maximum biomass-specific N₂O reduction rate is much more sensitive to pH variation outside of the optimal range (pH 7.5 to pH 8.0) than the maximum biomass-specific nitrate and nitrite reduction rates. The half-saturation coefficient of the N₂O reductase increased from 0.10 mg N₂O-N/L to 0.92 mg N₂O-N/L as pH increased from pH 6.0 to 9.0. At pH 6.0, approximately 20% and 40% of the denitrified nitrate accumulated as N₂O in the presence and absence of methanol (as an exogenous carbon source), respectively. However, at pH 6.5, these fractions decreased to 0% and 30%, respectively. No N₂O accumulation occurred at pH 7.0 to 9.0 independent of the availability of methanol. These results suggest that the competition for electrons among different nitrogen oxides reductases likely plays a role in N₂O accumulation at low pH conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=22749904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=22749904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo;pmid: 21803396
One of the main challenging issues for the aerobic granular sludge technology is the long startup time when dealing with real wastewaters. This study presents a novel strategy to reduce the time required for granulation while ensuring a high level of nutrient removal. This new approach consists of seeding the reactor with a mixture of crushed aerobic granules and floccular sludge. The effectiveness of the strategy was demonstrated using abattoir wastewater, containing nitrogen and phosphorus at approximately 250 mgN/L and 30 mgP/L, respectively. Seven different mixtures of crushed granules and floccular sludge at granular sludge fractions (w/w in dry mass) of 0%, 5%, 10%, 15%, 25%, 30% and 50% were used to start eight granulation processes. The granulation time (defined as the time when the 10th percentile bacterial aggregate size is larger than 200 μm) displayed a strong dependency on the fraction of granular sludge. The shortest granulation time of 18 days was obtained with 50% crushed granules, in comparison with 133 days with 5% crushed granules. Full granulation was not achieved in the two trials without seeding with crushed granules. In contrast to the 100% floccular sludge cases, where a substantial loss of biomass occurred during granulation, the biomass concentration in all other trails did not decrease during granulation. This allowed that good nitrogen removal was maintained in all the reactors during the granulation process. However, enhanced biological phosphorus removal was achieved in only one of the eight trials. This was likely due to the temporary accumulation of nitrite, a strong inhibitor of polyphosphate accumulating organisms.
Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2011.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2011.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Wiley Authors: Steven Pratt; Steven Pratt; Jurg Keller; Zhiguo Yuan;doi: 10.1002/bit.20199
pmid: 15449301
AbstractA method for detailed investigation of aerobic carbon degradation processes by microorganisms is presented. The method relies on an integrated use of the respirometric, titrimetric, and off‐gas CO2 measurements. The oxygen uptake rate (OUR), hydrogen ion production rate (HPR), and the carbon dioxide transfer rate (CTR) resulting from the biological as well as physicochemical processes, coupled with a metabolic model characterizing both the growth and carbon storage processes, enables the comprehensive study of the carbon degradation processes. The method allows the formation of carbon storage products and the biomass growth rates to be estimated without requiring any off‐line biomass or liquid‐phase measurements, although the practical identifiability of the system could be improved with additional measurements. Furthermore, the combined yield for biomass growth and carbon storage is identifiable, along with the affinity constant with respect to the carbon substrate. However, the individual yields for growth and carbon storage are not identifiable without further knowledge about the metabolic pathways employed by the microorganisms in the carbon conversion. This is true even when more process variables are measured. The method is applied to the aerobic carbon substrate degradation by a full‐scale sludge using acetate as an example carbon source. The sludge was able to quickly take up the substrate and store it as poly‐β‐hydroxybutyrate (PHB). The PHB formation rate was a few times faster than the biomass growth rate, which was confirmed by off‐line liquid‐ and solid‐phase analysis. The estimated combined yield for biomass growth and carbon storage compared closely to that determined from the theoretical yields reported in literature based on thermodynamics. This suggests that the theoretical yields may be used as default parameters for modeling purposes. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:American Chemical Society (ACS) Wang, Qilin; Ye, Liu; Jiang, Guangming; Jensen, Paul D.; Batstone, Damien J.; Yuan, Zhiguo;doi: 10.1021/es402933b
pmid: 24041014
Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.
Environmental Scienc... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es402933b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es402933b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Yong Qiu; Yizhen Zhang; Yanchen Liu; Bing Li; Zhiguo Yuan; Zhiguo Yuan; Xia Huang; Hongtao Pang; Yu Xue; Chi Zhang;Abstract Influent concentration and effluent standards have strong impacts on technology selection by wastewater treatment plants (WWTPs) and on resource recovery processes. In this paper, resource recovery simulation scenarios incorporated with conventional WWTP models were designed in an imitation of typical existing facilities. We integrated economic analysis and a life cycle assessment to evaluate the impacts of treatment technologies selected for different influent conditions and effluent standards. The results revealed that high concentration influents required the most complicated treatment processes to meet a strict effluent standard. The pattern of total impacts was strongly dependent on the influent conditions. High concentration influent was found to correlate with low energy consumption, low costs, a high nutrient recovery potential but also a high global warming potential when removing 1 kg of pollutants. The incorporation of resource recovery improved the overall performance of WWTPs; however, low concentration influents were not suitable for resource recovery due to their limited benefits. The strict effluent standard limited the resource recovery potential from wastewater, and a loose effluent standard may improve the resource recovery performance, especially for high concentration influents.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2019.104562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2019.104562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:IWA Publishing Lavallee, B.; Frigon, D; Lessard, P.; Vanrollengham, P.A.; Yuan, Zhiguo; van Loosdrecht, M.C.M.;doi: 10.2166/wst.2009.592
pmid: 19237760
Models currently used have been developed to describe the storage response in the activated sludge process. In these models the distribution of the substrate flux between growth and storage is an empirical function. rRNA-structured biomass models are proposed to describe the metabolic status of cells in view of predicting the growth response (dμ/dt) of cells in activated sludge process. The autocatalytic reaction rate of the synthesis of the PSS component (rRNA) can provide a mechanistic explanation for the growth response and the growth lag phase. The proposed models were able to describe and predict properly the growth response of the biomass in various types of reactor. Such models could be more widely applicable by using intrinsic model parameters. This would be a key improvement for as it would lead to improved models for design.
Water Science and Te... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2009.592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water Science and Te... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2009.592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Elsevier BV Authors: Vadivelu, Vel M.; Keller, Jurg; Yuan, Zhiguo;pmid: 17224173
The inhibitory effect of free ammonia (FA;NH(3)) on the metabolism of Nitrobacter is investigated using a method that allows decoupling energy generation from growth processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of Nitrobacter. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population in the reactor was Nitrobacter, while no Nitrospira was detected. Batch tests were carried out to measure the oxygen uptake rate (OUR) by the culture at various FA levels, in the presence (OUR with CO(2)) or absence (OUR without CO(2)) of inorganic carbon (CO(2), HCO(3)(-) and CO(3)(2-)). The FA inhibition on the respiration initiated at below 1mgNH(3)-NL(-1) in both cases. OUR without CO(2) gradually decreased by 12% when the FA concentration increased from 0 to approximately 4mgNH(3)-NL(-1) and remained at the same level till an FA level of 9mgNH(3)-NL(-1) (the highest FA concentration applied in this study). This indicates that FA has a limited inhibitory effect on the respiratory capability of Nitrobacter. Starting from a level that is 15% higher than OUR without CO(2) when no FA was present, OUR with CO(2)decreased more rapidly than OUR without CO(2) reaching the same level as OUR without CO(2) when FA was between 6-9mgNH(3)-NL(-1). This implies that in this range of FA the presence of inorganic carbon did not cause any increase in the respiration activity of Nitrobacter. The results suggest that, while still oxidizing nitrite at approximately 75% of the non-inhibited rate, Nitrobacter likely ceased to grow at an FA level of above 6mgNH(3)-NL(-1). While the real mechanisms remain to be identified, this study indicates that the FA inhibition on Nitrobacter is likely much more serious than suggested by previous studies where OUR with CO(2) (or the equivalent nitrite oxidation rate) was used as the sole measure of the inhibitory effects.
Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2006.11.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 199 citations 199 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Water Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2006.11.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu