- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Publicly fundedMorten Ryberg; Marisa Vieira; Jane C. Bare; Melissa Zgola; Ralph K. Rosenbaum;When LCA practitioners perform LCAs, the interpretation of the results can be difficult without a reference point to benchmark the results. Hence, normalization factors are important for relating results to a common reference. The main purpose of this paper was to update the normalization factors for the US and US-Canadian regions. The normalization factors were used for highlighting the most contributing substances, thereby enabling practitioners to put more focus on important substances, when compiling the inventory, as well as providing them with normalization factors reflecting the actual situation. Normalization factors were calculated using characterization factors from the TRACI 2.1 LCIA model. The inventory was based on US databases on emissions of substances. The Canadian inventory was based on a previous inventory with 2005 as reference, in this inventory the most significant substances were updated to 2008 data. The results showed that impact categories were generally dominated by a small number of substances. The contribution analysis showed that the reporting of substance classes was highly significant for the environmental impacts, although in reality, these substances are nonspecific in composition, so the characterization factors which were selected to represent these categories may be significantly different from the actual identity of these aggregates. Furthermore the contribution highlighted the issue of carefully examining the effects of metals, even though the toxicity based categories have only interim characterization factors calculated with USEtox. A need for improved understanding of the wide range of uncertainties incorporated into studies with reported substance classes was indentified. This was especially important since aggregated substance classes are often used in LCA modeling when information on the particular substance is missing. Given the dominance of metals to the human and ecotoxicity categories, it is imperative to refine the CFs within USEtox. Some of the results within this paper indicate that soil emissions of metals are significantly higher than we expect in actuality.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Publicly fundedMorten Ryberg; Marisa Vieira; Jane C. Bare; Melissa Zgola; Ralph K. Rosenbaum;When LCA practitioners perform LCAs, the interpretation of the results can be difficult without a reference point to benchmark the results. Hence, normalization factors are important for relating results to a common reference. The main purpose of this paper was to update the normalization factors for the US and US-Canadian regions. The normalization factors were used for highlighting the most contributing substances, thereby enabling practitioners to put more focus on important substances, when compiling the inventory, as well as providing them with normalization factors reflecting the actual situation. Normalization factors were calculated using characterization factors from the TRACI 2.1 LCIA model. The inventory was based on US databases on emissions of substances. The Canadian inventory was based on a previous inventory with 2005 as reference, in this inventory the most significant substances were updated to 2008 data. The results showed that impact categories were generally dominated by a small number of substances. The contribution analysis showed that the reporting of substance classes was highly significant for the environmental impacts, although in reality, these substances are nonspecific in composition, so the characterization factors which were selected to represent these categories may be significantly different from the actual identity of these aggregates. Furthermore the contribution highlighted the issue of carefully examining the effects of metals, even though the toxicity based categories have only interim characterization factors calculated with USEtox. A need for improved understanding of the wide range of uncertainties incorporated into studies with reported substance classes was indentified. This was especially important since aggregated substance classes are often used in LCA modeling when information on the particular substance is missing. Given the dominance of metals to the human and ecotoxicity categories, it is imperative to refine the CFs within USEtox. Some of the results within this paper indicate that soil emissions of metals are significantly higher than we expect in actuality.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: López i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; +1 AuthorsLópez i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; Hedlund, Katarina;Production of agricultural biofuels is expected to rise due to increasing climate change mitigation ambitions. Policy interventions promoting targeted bioenergy solutions can be motivated by the large environmental externalities present in agricultural systems and the local context of biomass production co-benefits. Introducing energy crops in crop rotations in arable land with depleted Soil Organic Carbon (SOC) levels offers the potential to increase SOC stocks and future crop yields as a step towards more sustainable agricultural systems. However, the environmental performance of a policy incentive for energy crops with SOC co-benefits is less evident when considering its land-use effects within and outside of the target agricultural system. We study the potential impacts of a change in agricultural policy on regional agricultural structure and production, and the environment with an Agent-Based Life Cycle Assessment approach. We simulate a policy payment that would achieve adoption of grass leys in crop rotations corresponding to 25 % of the highly productive land in an intensive farming region of southern Sweden. Although enhancing soil health in SOC-depleted farming regions is a desirable environmental objective, its significance is limited within the life-cycle performance of the payment. Instead, crop-displacement impacts and the grass potential as biofuel feedstock are the main drivers. The active utilisation of grasses for biofuel purposes is key in reaching a positive environmental evaluation of the policy instrument. Our environmental evaluation is likely generalisable to other regions with similar technological levels and farming intensity, while our analysis on structural shifts is specific to the policy instrument and agricultural production system under study. Overall, our work provides a method to contrast regional effects and global environmental impacts of policy instruments supporting agricultural biomass for biofuels prior to implementation. This contributes to the environmental assessment of land-based biofuels at a time when their sustainability is highly debated.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: López i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; +1 AuthorsLópez i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; Hedlund, Katarina;Production of agricultural biofuels is expected to rise due to increasing climate change mitigation ambitions. Policy interventions promoting targeted bioenergy solutions can be motivated by the large environmental externalities present in agricultural systems and the local context of biomass production co-benefits. Introducing energy crops in crop rotations in arable land with depleted Soil Organic Carbon (SOC) levels offers the potential to increase SOC stocks and future crop yields as a step towards more sustainable agricultural systems. However, the environmental performance of a policy incentive for energy crops with SOC co-benefits is less evident when considering its land-use effects within and outside of the target agricultural system. We study the potential impacts of a change in agricultural policy on regional agricultural structure and production, and the environment with an Agent-Based Life Cycle Assessment approach. We simulate a policy payment that would achieve adoption of grass leys in crop rotations corresponding to 25 % of the highly productive land in an intensive farming region of southern Sweden. Although enhancing soil health in SOC-depleted farming regions is a desirable environmental objective, its significance is limited within the life-cycle performance of the payment. Instead, crop-displacement impacts and the grass potential as biofuel feedstock are the main drivers. The active utilisation of grasses for biofuel purposes is key in reaching a positive environmental evaluation of the policy instrument. Our environmental evaluation is likely generalisable to other regions with similar technological levels and farming intensity, while our analysis on structural shifts is specific to the policy instrument and agricultural production system under study. Overall, our work provides a method to contrast regional effects and global environmental impacts of policy instruments supporting agricultural biomass for biofuels prior to implementation. This contributes to the environmental assessment of land-based biofuels at a time when their sustainability is highly debated.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, Netherlands, United States, Canada, Netherlands, NetherlandsPublisher:American Chemical Society (ACS) Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E.;doi: 10.1021/es703145t
pmid: 18939523
Author(s): Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E. | Abstract: Achieving consensus among scientists is often a challenge?particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions?including the strategy, execution, and results of a process that used model comparison to achieve parsimony. This process has succeeded in establishing a transparent LCIA consensus model. We present the lessons that may be adapted by similar consensus processes in other fields. LCIA characterizes potential impacts on human health and the environment attributable to chemical emissions over the life cycle of a product. LCIA relies on substance-specific characterization factors (CFs) that combine exposure potential and toxicity to represent the relative contribution of the substance to health and environmental impacts (1). LCIA focuses on comparative assessment, using approaches adapted from risk assessment. In 2003, in response to large variations in available methods, an international model comparison/consensus process was initiated. This process was under the umbrella of the Life Cycle Initiative, a joint effort of the United Nations Environment Program (UNEP) and the Society of Environmental Toxicology and Chemistry (SETAC) (2). The process encompassed an international group of model developers responsible for the most commonly-used worldwide LCIA characterization models and focused on characterization of human and ecosystem health impacts. It also involved disciplinary experts in fate and transport, exposure assessment, health risk assessment, and ecotoxicology. The comparison/consensus process fostered a common understanding among the participants of which model elements contribute most to the relative magnitude of LCIA characterization factors. It became clear that with a careful focus on the most influential model elements a consensus model could be established. Experience dictated that a more transparent model would be more likely to gain and retain acceptance and wide-spread use. The need for consistent documentation and transparency led the participants to create an entirely new model, building on contributions from the existing models. This required consensus on essential model elements, provided robust results consistent with existing models, and made parsimony a guiding principle. The tangible outcome is "USEtox", named in recognition of the UNEP-SETAC Life Cycle Initiative under which it was developed. The model is supported by all participating model teams as a basis for future global recommendations of LCIA characterization factors.
Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, Netherlands, United States, Canada, Netherlands, NetherlandsPublisher:American Chemical Society (ACS) Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E.;doi: 10.1021/es703145t
pmid: 18939523
Author(s): Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E. | Abstract: Achieving consensus among scientists is often a challenge?particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions?including the strategy, execution, and results of a process that used model comparison to achieve parsimony. This process has succeeded in establishing a transparent LCIA consensus model. We present the lessons that may be adapted by similar consensus processes in other fields. LCIA characterizes potential impacts on human health and the environment attributable to chemical emissions over the life cycle of a product. LCIA relies on substance-specific characterization factors (CFs) that combine exposure potential and toxicity to represent the relative contribution of the substance to health and environmental impacts (1). LCIA focuses on comparative assessment, using approaches adapted from risk assessment. In 2003, in response to large variations in available methods, an international model comparison/consensus process was initiated. This process was under the umbrella of the Life Cycle Initiative, a joint effort of the United Nations Environment Program (UNEP) and the Society of Environmental Toxicology and Chemistry (SETAC) (2). The process encompassed an international group of model developers responsible for the most commonly-used worldwide LCIA characterization models and focused on characterization of human and ecosystem health impacts. It also involved disciplinary experts in fate and transport, exposure assessment, health risk assessment, and ecotoxicology. The comparison/consensus process fostered a common understanding among the participants of which model elements contribute most to the relative magnitude of LCIA characterization factors. It became clear that with a careful focus on the most influential model elements a consensus model could be established. Experience dictated that a more transparent model would be more likely to gain and retain acceptance and wide-spread use. The need for consistent documentation and transparency led the participants to create an entirely new model, building on contributions from the existing models. This required consensus on essential model elements, provided robust results consistent with existing models, and made parsimony a guiding principle. The tangible outcome is "USEtox", named in recognition of the UNEP-SETAC Life Cycle Initiative under which it was developed. The model is supported by all participating model teams as a basis for future global recommendations of LCIA characterization factors.
Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Germany, Netherlands, United States, United States, Canada, Netherlands, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Lois Swirsky Gold; Annette Koehler; Jérôme Payet; Till M. Bachmann; Dik van de Meent; Olivier Jolliet; Henrik Fred Larsen; Matthew MacLeod; Mark A. J. Huijbregts; Manuele Margni; Ralph K. Rosenbaum; Marta Schuhmacher; Michael Zwicky Hauschild; Thomas E. McKone; Ronnie Juraske; Ronnie Juraske;In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Germany, Netherlands, United States, United States, Canada, Netherlands, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Lois Swirsky Gold; Annette Koehler; Jérôme Payet; Till M. Bachmann; Dik van de Meent; Olivier Jolliet; Henrik Fred Larsen; Matthew MacLeod; Mark A. J. Huijbregts; Manuele Margni; Ralph K. Rosenbaum; Marta Schuhmacher; Michael Zwicky Hauschild; Thomas E. McKone; Ronnie Juraske; Ronnie Juraske;In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Leao, Susana; Roux, Philippe; Loiseau, Eléonore; Junqua, Guillaume; Rosenbaum, Ralph;A worldwide-regionalized water supply mix (WSmix) has been developed for use in life cycle assessment (LCA) studies. The WSmix is the combination of water sources and water technologies to meet a water user need at a specific time (season, month) and location. A global database has been computed to collect information on water sources and users at country and river basin scales. However, its application to LCA case studies at different locations and for different users has not yet been fully tested and analysed. The aim of this study is to operationalise WSmix for application in LCA and to test the added value and usability of WSmix by applying it worldwide to two different systems, a service and a global product, considering different climatic and socio-economic conditions. The WSmix is applied to two main water users, the results are analysed, and the variability of the WSmix for 91 countries with different socio-economic conditions is discussed. Some examples of the variability of the water sources mix (WOmix) and the temporal variation at river basin scale are presented. The results show that the WSmix has a great influence on the environmental profile of water supply for different users considering different climatic and socio-economic conditions. Moreover, the interdependence between water and energy (i.e. water-energy nexus) is clearly established, which reinforces the importance to link a regionalized WSmix with national/regionalized electricity mix. In conclusion, the WSmix has been operationalised and applied in LCI databases. Its added value and usability has been demonstrated by applying it at a worldwide scale for two different users. Methodological developments are still required to increase its spatiotemporal resolution, and LCIA methods need to be improved to better consider its different components (including water sources).
Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Leao, Susana; Roux, Philippe; Loiseau, Eléonore; Junqua, Guillaume; Rosenbaum, Ralph;A worldwide-regionalized water supply mix (WSmix) has been developed for use in life cycle assessment (LCA) studies. The WSmix is the combination of water sources and water technologies to meet a water user need at a specific time (season, month) and location. A global database has been computed to collect information on water sources and users at country and river basin scales. However, its application to LCA case studies at different locations and for different users has not yet been fully tested and analysed. The aim of this study is to operationalise WSmix for application in LCA and to test the added value and usability of WSmix by applying it worldwide to two different systems, a service and a global product, considering different climatic and socio-economic conditions. The WSmix is applied to two main water users, the results are analysed, and the variability of the WSmix for 91 countries with different socio-economic conditions is discussed. Some examples of the variability of the water sources mix (WOmix) and the temporal variation at river basin scale are presented. The results show that the WSmix has a great influence on the environmental profile of water supply for different users considering different climatic and socio-economic conditions. Moreover, the interdependence between water and energy (i.e. water-energy nexus) is clearly established, which reinforces the importance to link a regionalized WSmix with national/regionalized electricity mix. In conclusion, the WSmix has been operationalised and applied in LCI databases. Its added value and usability has been demonstrated by applying it at a worldwide scale for two different users. Methodological developments are still required to increase its spatiotemporal resolution, and LCIA methods need to be improved to better consider its different components (including water sources).
Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Switzerland, Canada, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Jolliet, Olivier; Margni, Manuele; Charles, Raphaël; Humbert, Sébastien; Payet, Jérôme; Rebitzer, Gerald; Rosenbaum, Ralph;doi: 10.1007/bf02978505
The new IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation of a combined midpoint/damage approach, linking all types of life cycle inventory results (elementary flows and other interventions) via 14 midpoint categories to four damage categories. For IMPACT 2002+, new concepts and methods have been developed, especially for the comparative assessment of human toxicity and ecotoxicity. Human Damage Factors are calculated for carcinogens and non-carcinogens, employing intake fractions, best estimates of dose-response slope factors, as well as severities. The transfer of contaminants into the human food is no more based on consumption surveys, but accounts for agricultural and livestock production levels. Indoor and outdoor air emissions can be compared and the intermittent character of rainfall is considered. Both human toxicity and ecotoxicity effect factors are based on mean responses rather than on conservative assumptions. Other midpoint categories are adapted from existing characterizing methods (Eco-indicator 99 and CML 2002). All midpoint scores are expressed in units of a reference substance and related to the four damage categories human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. The IMPACT 2002+ method presently provides characterization factors for almost 1500 different LCI-results, which can be downloaded at http://www.epfl.ch/impact
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,548 popularity Top 0.01% influence Top 0.01% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Switzerland, Canada, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Jolliet, Olivier; Margni, Manuele; Charles, Raphaël; Humbert, Sébastien; Payet, Jérôme; Rebitzer, Gerald; Rosenbaum, Ralph;doi: 10.1007/bf02978505
The new IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation of a combined midpoint/damage approach, linking all types of life cycle inventory results (elementary flows and other interventions) via 14 midpoint categories to four damage categories. For IMPACT 2002+, new concepts and methods have been developed, especially for the comparative assessment of human toxicity and ecotoxicity. Human Damage Factors are calculated for carcinogens and non-carcinogens, employing intake fractions, best estimates of dose-response slope factors, as well as severities. The transfer of contaminants into the human food is no more based on consumption surveys, but accounts for agricultural and livestock production levels. Indoor and outdoor air emissions can be compared and the intermittent character of rainfall is considered. Both human toxicity and ecotoxicity effect factors are based on mean responses rather than on conservative assumptions. Other midpoint categories are adapted from existing characterizing methods (Eco-indicator 99 and CML 2002). All midpoint scores are expressed in units of a reference substance and related to the four damage categories human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. The IMPACT 2002+ method presently provides characterization factors for almost 1500 different LCI-results, which can be downloaded at http://www.epfl.ch/impact
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,548 popularity Top 0.01% influence Top 0.01% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Publicly fundedMorten Ryberg; Marisa Vieira; Jane C. Bare; Melissa Zgola; Ralph K. Rosenbaum;When LCA practitioners perform LCAs, the interpretation of the results can be difficult without a reference point to benchmark the results. Hence, normalization factors are important for relating results to a common reference. The main purpose of this paper was to update the normalization factors for the US and US-Canadian regions. The normalization factors were used for highlighting the most contributing substances, thereby enabling practitioners to put more focus on important substances, when compiling the inventory, as well as providing them with normalization factors reflecting the actual situation. Normalization factors were calculated using characterization factors from the TRACI 2.1 LCIA model. The inventory was based on US databases on emissions of substances. The Canadian inventory was based on a previous inventory with 2005 as reference, in this inventory the most significant substances were updated to 2008 data. The results showed that impact categories were generally dominated by a small number of substances. The contribution analysis showed that the reporting of substance classes was highly significant for the environmental impacts, although in reality, these substances are nonspecific in composition, so the characterization factors which were selected to represent these categories may be significantly different from the actual identity of these aggregates. Furthermore the contribution highlighted the issue of carefully examining the effects of metals, even though the toxicity based categories have only interim characterization factors calculated with USEtox. A need for improved understanding of the wide range of uncertainties incorporated into studies with reported substance classes was indentified. This was especially important since aggregated substance classes are often used in LCA modeling when information on the particular substance is missing. Given the dominance of metals to the human and ecotoxicity categories, it is imperative to refine the CFs within USEtox. Some of the results within this paper indicate that soil emissions of metals are significantly higher than we expect in actuality.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Publicly fundedMorten Ryberg; Marisa Vieira; Jane C. Bare; Melissa Zgola; Ralph K. Rosenbaum;When LCA practitioners perform LCAs, the interpretation of the results can be difficult without a reference point to benchmark the results. Hence, normalization factors are important for relating results to a common reference. The main purpose of this paper was to update the normalization factors for the US and US-Canadian regions. The normalization factors were used for highlighting the most contributing substances, thereby enabling practitioners to put more focus on important substances, when compiling the inventory, as well as providing them with normalization factors reflecting the actual situation. Normalization factors were calculated using characterization factors from the TRACI 2.1 LCIA model. The inventory was based on US databases on emissions of substances. The Canadian inventory was based on a previous inventory with 2005 as reference, in this inventory the most significant substances were updated to 2008 data. The results showed that impact categories were generally dominated by a small number of substances. The contribution analysis showed that the reporting of substance classes was highly significant for the environmental impacts, although in reality, these substances are nonspecific in composition, so the characterization factors which were selected to represent these categories may be significantly different from the actual identity of these aggregates. Furthermore the contribution highlighted the issue of carefully examining the effects of metals, even though the toxicity based categories have only interim characterization factors calculated with USEtox. A need for improved understanding of the wide range of uncertainties incorporated into studies with reported substance classes was indentified. This was especially important since aggregated substance classes are often used in LCA modeling when information on the particular substance is missing. Given the dominance of metals to the human and ecotoxicity categories, it is imperative to refine the CFs within USEtox. Some of the results within this paper indicate that soil emissions of metals are significantly higher than we expect in actuality.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0629-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: López i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; +1 AuthorsLópez i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; Hedlund, Katarina;Production of agricultural biofuels is expected to rise due to increasing climate change mitigation ambitions. Policy interventions promoting targeted bioenergy solutions can be motivated by the large environmental externalities present in agricultural systems and the local context of biomass production co-benefits. Introducing energy crops in crop rotations in arable land with depleted Soil Organic Carbon (SOC) levels offers the potential to increase SOC stocks and future crop yields as a step towards more sustainable agricultural systems. However, the environmental performance of a policy incentive for energy crops with SOC co-benefits is less evident when considering its land-use effects within and outside of the target agricultural system. We study the potential impacts of a change in agricultural policy on regional agricultural structure and production, and the environment with an Agent-Based Life Cycle Assessment approach. We simulate a policy payment that would achieve adoption of grass leys in crop rotations corresponding to 25 % of the highly productive land in an intensive farming region of southern Sweden. Although enhancing soil health in SOC-depleted farming regions is a desirable environmental objective, its significance is limited within the life-cycle performance of the payment. Instead, crop-displacement impacts and the grass potential as biofuel feedstock are the main drivers. The active utilisation of grasses for biofuel purposes is key in reaching a positive environmental evaluation of the policy instrument. Our environmental evaluation is likely generalisable to other regions with similar technological levels and farming intensity, while our analysis on structural shifts is specific to the policy instrument and agricultural production system under study. Overall, our work provides a method to contrast regional effects and global environmental impacts of policy instruments supporting agricultural biomass for biofuels prior to implementation. This contributes to the environmental assessment of land-based biofuels at a time when their sustainability is highly debated.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Elsevier BV Authors: López i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; +1 AuthorsLópez i Losada, Raül; Rosenbaum, Ralph K.; Brady, Mark V.; Wilhelmsson, Fredrik; Hedlund, Katarina;Production of agricultural biofuels is expected to rise due to increasing climate change mitigation ambitions. Policy interventions promoting targeted bioenergy solutions can be motivated by the large environmental externalities present in agricultural systems and the local context of biomass production co-benefits. Introducing energy crops in crop rotations in arable land with depleted Soil Organic Carbon (SOC) levels offers the potential to increase SOC stocks and future crop yields as a step towards more sustainable agricultural systems. However, the environmental performance of a policy incentive for energy crops with SOC co-benefits is less evident when considering its land-use effects within and outside of the target agricultural system. We study the potential impacts of a change in agricultural policy on regional agricultural structure and production, and the environment with an Agent-Based Life Cycle Assessment approach. We simulate a policy payment that would achieve adoption of grass leys in crop rotations corresponding to 25 % of the highly productive land in an intensive farming region of southern Sweden. Although enhancing soil health in SOC-depleted farming regions is a desirable environmental objective, its significance is limited within the life-cycle performance of the payment. Instead, crop-displacement impacts and the grass potential as biofuel feedstock are the main drivers. The active utilisation of grasses for biofuel purposes is key in reaching a positive environmental evaluation of the policy instrument. Our environmental evaluation is likely generalisable to other regions with similar technological levels and farming intensity, while our analysis on structural shifts is specific to the policy instrument and agricultural production system under study. Overall, our work provides a method to contrast regional effects and global environmental impacts of policy instruments supporting agricultural biomass for biofuels prior to implementation. This contributes to the environmental assessment of land-based biofuels at a time when their sustainability is highly debated.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, Netherlands, United States, Canada, Netherlands, NetherlandsPublisher:American Chemical Society (ACS) Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E.;doi: 10.1021/es703145t
pmid: 18939523
Author(s): Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E. | Abstract: Achieving consensus among scientists is often a challenge?particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions?including the strategy, execution, and results of a process that used model comparison to achieve parsimony. This process has succeeded in establishing a transparent LCIA consensus model. We present the lessons that may be adapted by similar consensus processes in other fields. LCIA characterizes potential impacts on human health and the environment attributable to chemical emissions over the life cycle of a product. LCIA relies on substance-specific characterization factors (CFs) that combine exposure potential and toxicity to represent the relative contribution of the substance to health and environmental impacts (1). LCIA focuses on comparative assessment, using approaches adapted from risk assessment. In 2003, in response to large variations in available methods, an international model comparison/consensus process was initiated. This process was under the umbrella of the Life Cycle Initiative, a joint effort of the United Nations Environment Program (UNEP) and the Society of Environmental Toxicology and Chemistry (SETAC) (2). The process encompassed an international group of model developers responsible for the most commonly-used worldwide LCIA characterization models and focused on characterization of human and ecosystem health impacts. It also involved disciplinary experts in fate and transport, exposure assessment, health risk assessment, and ecotoxicology. The comparison/consensus process fostered a common understanding among the participants of which model elements contribute most to the relative magnitude of LCIA characterization factors. It became clear that with a careful focus on the most influential model elements a consensus model could be established. Experience dictated that a more transparent model would be more likely to gain and retain acceptance and wide-spread use. The need for consistent documentation and transparency led the participants to create an entirely new model, building on contributions from the existing models. This required consensus on essential model elements, provided robust results consistent with existing models, and made parsimony a guiding principle. The tangible outcome is "USEtox", named in recognition of the UNEP-SETAC Life Cycle Initiative under which it was developed. The model is supported by all participating model teams as a basis for future global recommendations of LCIA characterization factors.
Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Netherlands, Netherlands, United States, Canada, Netherlands, NetherlandsPublisher:American Chemical Society (ACS) Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E.;doi: 10.1021/es703145t
pmid: 18939523
Author(s): Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; Meent, D. van de; Rosenbaum, R.K.; McKone, T.E. | Abstract: Achieving consensus among scientists is often a challenge?particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions?including the strategy, execution, and results of a process that used model comparison to achieve parsimony. This process has succeeded in establishing a transparent LCIA consensus model. We present the lessons that may be adapted by similar consensus processes in other fields. LCIA characterizes potential impacts on human health and the environment attributable to chemical emissions over the life cycle of a product. LCIA relies on substance-specific characterization factors (CFs) that combine exposure potential and toxicity to represent the relative contribution of the substance to health and environmental impacts (1). LCIA focuses on comparative assessment, using approaches adapted from risk assessment. In 2003, in response to large variations in available methods, an international model comparison/consensus process was initiated. This process was under the umbrella of the Life Cycle Initiative, a joint effort of the United Nations Environment Program (UNEP) and the Society of Environmental Toxicology and Chemistry (SETAC) (2). The process encompassed an international group of model developers responsible for the most commonly-used worldwide LCIA characterization models and focused on characterization of human and ecosystem health impacts. It also involved disciplinary experts in fate and transport, exposure assessment, health risk assessment, and ecotoxicology. The comparison/consensus process fostered a common understanding among the participants of which model elements contribute most to the relative magnitude of LCIA characterization factors. It became clear that with a careful focus on the most influential model elements a consensus model could be established. Experience dictated that a more transparent model would be more likely to gain and retain acceptance and wide-spread use. The need for consistent documentation and transparency led the participants to create an entirely new model, building on contributions from the existing models. This required consensus on essential model elements, provided robust results consistent with existing models, and made parsimony a guiding principle. The tangible outcome is "USEtox", named in recognition of the UNEP-SETAC Life Cycle Initiative under which it was developed. The model is supported by all participating model teams as a basis for future global recommendations of LCIA characterization factors.
Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaEnvironmental Science & TechnologyArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationseScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es703145t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Germany, Netherlands, United States, United States, Canada, Netherlands, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Lois Swirsky Gold; Annette Koehler; Jérôme Payet; Till M. Bachmann; Dik van de Meent; Olivier Jolliet; Henrik Fred Larsen; Matthew MacLeod; Mark A. J. Huijbregts; Manuele Margni; Ralph K. Rosenbaum; Marta Schuhmacher; Michael Zwicky Hauschild; Thomas E. McKone; Ronnie Juraske; Ronnie Juraske;In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 Netherlands, Germany, Netherlands, United States, United States, Canada, Netherlands, Switzerland, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Lois Swirsky Gold; Annette Koehler; Jérôme Payet; Till M. Bachmann; Dik van de Meent; Olivier Jolliet; Henrik Fred Larsen; Matthew MacLeod; Mark A. J. Huijbregts; Manuele Margni; Ralph K. Rosenbaum; Marta Schuhmacher; Michael Zwicky Hauschild; Thomas E. McKone; Ronnie Juraske; Ronnie Juraske;In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,221 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)The International Journal of Life Cycle AssessmentArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: CrossrefThe International Journal of Life Cycle AssessmentArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Web-based Archive of RIVM PublicationsArticle . 2008Data sources: Web-based Archive of RIVM PublicationsUniversity of North Texas: UNT Digital LibraryArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-008-0038-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Leao, Susana; Roux, Philippe; Loiseau, Eléonore; Junqua, Guillaume; Rosenbaum, Ralph;A worldwide-regionalized water supply mix (WSmix) has been developed for use in life cycle assessment (LCA) studies. The WSmix is the combination of water sources and water technologies to meet a water user need at a specific time (season, month) and location. A global database has been computed to collect information on water sources and users at country and river basin scales. However, its application to LCA case studies at different locations and for different users has not yet been fully tested and analysed. The aim of this study is to operationalise WSmix for application in LCA and to test the added value and usability of WSmix by applying it worldwide to two different systems, a service and a global product, considering different climatic and socio-economic conditions. The WSmix is applied to two main water users, the results are analysed, and the variability of the WSmix for 91 countries with different socio-economic conditions is discussed. Some examples of the variability of the water sources mix (WOmix) and the temporal variation at river basin scale are presented. The results show that the WSmix has a great influence on the environmental profile of water supply for different users considering different climatic and socio-economic conditions. Moreover, the interdependence between water and energy (i.e. water-energy nexus) is clearly established, which reinforces the importance to link a regionalized WSmix with national/regionalized electricity mix. In conclusion, the WSmix has been operationalised and applied in LCI databases. Its added value and usability has been demonstrated by applying it at a worldwide scale for two different users. Methodological developments are still required to increase its spatiotemporal resolution, and LCIA methods need to be improved to better consider its different components (including water sources).
Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Leao, Susana; Roux, Philippe; Loiseau, Eléonore; Junqua, Guillaume; Rosenbaum, Ralph;A worldwide-regionalized water supply mix (WSmix) has been developed for use in life cycle assessment (LCA) studies. The WSmix is the combination of water sources and water technologies to meet a water user need at a specific time (season, month) and location. A global database has been computed to collect information on water sources and users at country and river basin scales. However, its application to LCA case studies at different locations and for different users has not yet been fully tested and analysed. The aim of this study is to operationalise WSmix for application in LCA and to test the added value and usability of WSmix by applying it worldwide to two different systems, a service and a global product, considering different climatic and socio-economic conditions. The WSmix is applied to two main water users, the results are analysed, and the variability of the WSmix for 91 countries with different socio-economic conditions is discussed. Some examples of the variability of the water sources mix (WOmix) and the temporal variation at river basin scale are presented. The results show that the WSmix has a great influence on the environmental profile of water supply for different users considering different climatic and socio-economic conditions. Moreover, the interdependence between water and energy (i.e. water-energy nexus) is clearly established, which reinforces the importance to link a regionalized WSmix with national/regionalized electricity mix. In conclusion, the WSmix has been operationalised and applied in LCI databases. Its added value and usability has been demonstrated by applying it at a worldwide scale for two different users. Methodological developments are still required to increase its spatiotemporal resolution, and LCIA methods need to be improved to better consider its different components (including water sources).
Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-019-01630-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Switzerland, Canada, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Jolliet, Olivier; Margni, Manuele; Charles, Raphaël; Humbert, Sébastien; Payet, Jérôme; Rebitzer, Gerald; Rosenbaum, Ralph;doi: 10.1007/bf02978505
The new IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation of a combined midpoint/damage approach, linking all types of life cycle inventory results (elementary flows and other interventions) via 14 midpoint categories to four damage categories. For IMPACT 2002+, new concepts and methods have been developed, especially for the comparative assessment of human toxicity and ecotoxicity. Human Damage Factors are calculated for carcinogens and non-carcinogens, employing intake fractions, best estimates of dose-response slope factors, as well as severities. The transfer of contaminants into the human food is no more based on consumption surveys, but accounts for agricultural and livestock production levels. Indoor and outdoor air emissions can be compared and the intermittent character of rainfall is considered. Both human toxicity and ecotoxicity effect factors are based on mean responses rather than on conservative assumptions. Other midpoint categories are adapted from existing characterizing methods (Eco-indicator 99 and CML 2002). All midpoint scores are expressed in units of a reference substance and related to the four damage categories human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. The IMPACT 2002+ method presently provides characterization factors for almost 1500 different LCI-results, which can be downloaded at http://www.epfl.ch/impact
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,548 popularity Top 0.01% influence Top 0.01% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Switzerland, Canada, Switzerland, SwitzerlandPublisher:Springer Science and Business Media LLC Jolliet, Olivier; Margni, Manuele; Charles, Raphaël; Humbert, Sébastien; Payet, Jérôme; Rebitzer, Gerald; Rosenbaum, Ralph;doi: 10.1007/bf02978505
The new IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation of a combined midpoint/damage approach, linking all types of life cycle inventory results (elementary flows and other interventions) via 14 midpoint categories to four damage categories. For IMPACT 2002+, new concepts and methods have been developed, especially for the comparative assessment of human toxicity and ecotoxicity. Human Damage Factors are calculated for carcinogens and non-carcinogens, employing intake fractions, best estimates of dose-response slope factors, as well as severities. The transfer of contaminants into the human food is no more based on consumption surveys, but accounts for agricultural and livestock production levels. Indoor and outdoor air emissions can be compared and the intermittent character of rainfall is considered. Both human toxicity and ecotoxicity effect factors are based on mean responses rather than on conservative assumptions. Other midpoint categories are adapted from existing characterizing methods (Eco-indicator 99 and CML 2002). All midpoint scores are expressed in units of a reference substance and related to the four damage categories human health, ecosystem quality, climate change, and resources. Normalization can be performed either at midpoint or at damage level. The IMPACT 2002+ method presently provides characterization factors for almost 1500 different LCI-results, which can be downloaded at http://www.epfl.ch/impact
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 1,548 popularity Top 0.01% influence Top 0.01% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2003 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf02978505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu