- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Kashem M. Muttaqi; Eby Isac; Anand Mandal; Danny Sutanto; Sharmin Akter;The era of the electrified transportation system is fast approaching. Although the socioeconomic and environmental benefits of electric vehicles (EVs) have contributed to their large-scale utilization, it has also created a huge load demand on the existing power grids throughout the world. Moreover, fast, super-fast, and ultra-super-fast charging stations are under development, some of which are now in the markets. These have the potential to cause power quality issues such as charging transients, rapid voltage fluctuations, and harmonics in the power grids. Moreover, EVs can participate as mobile storage to provide vehicle-to-grid (V2G) support and ancillary services. There are still some barriers to the wide implementation of V2G systems. This paper addresses these issues and provides a review of the state-of-the-art EV technologies and their impacts on power grids. This paper also investigates the impacts of random and fluctuating EV fast-charging loads on the electric power grids, mainly considering the random connection of EVs to the power grids through DC fast-charging stations as the principal source of fluctuating EV loads. A practical electrical grid of Wollongong, New South Wales, Australia has been considered in this work to separately analyze the impacts of constant current (CC) and constant voltage (CV) charging modes upon the grid. Furthermore, design and modeling of three different commercial DC fast charger connections (CHAdeMO, SAE CCS, and ChargePoint Express 200), with separate CC-CV charging modes of the DC fast chargers have been incorporated. To quantify the impacts, two separate scenarios were examined using a simulation platform, with case studies conducted to determine the impacts on the power grid. The first scenario involved three fast charging stations, while the second scenario featured ten stations that were able to charge six and twenty electric vehicles respectively, with various load combinations considered. Each of these scenarios was analyzed under different conditions to ...
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2023.109899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2023.109899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Kashem M. Muttaqi; Eby Isac; Anand Mandal; Danny Sutanto; Sharmin Akter;The era of the electrified transportation system is fast approaching. Although the socioeconomic and environmental benefits of electric vehicles (EVs) have contributed to their large-scale utilization, it has also created a huge load demand on the existing power grids throughout the world. Moreover, fast, super-fast, and ultra-super-fast charging stations are under development, some of which are now in the markets. These have the potential to cause power quality issues such as charging transients, rapid voltage fluctuations, and harmonics in the power grids. Moreover, EVs can participate as mobile storage to provide vehicle-to-grid (V2G) support and ancillary services. There are still some barriers to the wide implementation of V2G systems. This paper addresses these issues and provides a review of the state-of-the-art EV technologies and their impacts on power grids. This paper also investigates the impacts of random and fluctuating EV fast-charging loads on the electric power grids, mainly considering the random connection of EVs to the power grids through DC fast-charging stations as the principal source of fluctuating EV loads. A practical electrical grid of Wollongong, New South Wales, Australia has been considered in this work to separately analyze the impacts of constant current (CC) and constant voltage (CV) charging modes upon the grid. Furthermore, design and modeling of three different commercial DC fast charger connections (CHAdeMO, SAE CCS, and ChargePoint Express 200), with separate CC-CV charging modes of the DC fast chargers have been incorporated. To quantify the impacts, two separate scenarios were examined using a simulation platform, with case studies conducted to determine the impacts on the power grid. The first scenario involved three fast charging stations, while the second scenario featured ten stations that were able to charge six and twenty electric vehicles respectively, with various load combinations considered. Each of these scenarios was analyzed under different conditions to ...
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2023.109899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2023.109899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu