- home
- Advanced Search
- Energy Research
- 15. Life on land
- Energy Research
- 15. Life on land
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Sweden, PolandPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Sweden, PolandPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu