- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Processes and mechanisms ..., IReLSFI| Processes and mechanisms controlling carbon sequestration and storage in “blue carbon habitats”; advancing Ireland’s capacity to mitigate and adapt to climate change (BlueCarbon) ,IReLAndrea Fuchs; Ian C. Davidson; J. Patrick Megonigal; John L. Devaney; Christina Simkanin; Genevieve L. Noyce; Meng Lu; Grace M. Cott;doi: 10.1002/ppp3.10578
Societal Impact StatementThe invasive species S. alterniflora and P. australis are fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found that Spartina and Phragmites increase methane but not nitrous oxide emissions, with Phragmites having a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates.Summary Globally, Spartina alterniflora and Phragmites australis are among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats. We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands. Our results show that both invasive species increase CH4 fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2 and N2O fluxes. The magnitude of emissions from Spartina and Phragmites differs among native habitats. GHG fluxes, soil carbon and plant biomass of Spartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4). This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ppp3.10578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ppp3.10578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Wiley Publicly fundedFunded by:IRCIRCJohn L. Devaney; John L. Devaney; Christina Simkanin; Ian C. Davidson; Grace M. Cott; Grace M. Cott;doi: 10.1111/gcb.14426
pmid: 30270555
AbstractHuman‐caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats—collectively known as “blue carbon” and coastal vegetated habitats (CVHs)—are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem‐based management of these systems. In a global meta‐analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat‐level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invadedCVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C‐forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C‐rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter‐directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta‐analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Ireland, United KingdomPublisher:Public Library of Science (PLoS) Publicly fundedBond-Lamberty, Ben; Devaney, John L.; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John;Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/109004/1/109004.pdfData sources: CORE (RIOXX-UK Aggregator)MURAL - Maynooth University Research Archive LibraryArticle . 2015 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryCork Open Research Archive (CORA)Article . 2015License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0133583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/109004/1/109004.pdfData sources: CORE (RIOXX-UK Aggregator)MURAL - Maynooth University Research Archive LibraryArticle . 2015 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryCork Open Research Archive (CORA)Article . 2015License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0133583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: M...NSF| Collaborative Research: Multi-Scale Drivers and Effects of Biotic Change in the Global Mangrove-Saltmarsh EcotoneJohn L. Devaney; Michael Lehmann; Michael Lehmann; Ilka C. Feller; John D. Parker;doi: 10.1002/ecy.1979
pmid: 28779524
AbstractRecent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze‐sensitive mangrove‐saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming‐induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation‐microclimate interactions as important moderators of climate driven range shifts.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2017 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryMaynooth University ePrints and eTheses Archive (National University of Ireland)Article . 2017License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2017 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryMaynooth University ePrints and eTheses Archive (National University of Ireland)Article . 2017License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 IrelandPublisher:Wiley Publicly fundedFunded by:SFI | Processes and mechanisms ..., IReLSFI| Processes and mechanisms controlling carbon sequestration and storage in “blue carbon habitats”; advancing Ireland’s capacity to mitigate and adapt to climate change (BlueCarbon) ,IReLAndrea Fuchs; Ian C. Davidson; J. Patrick Megonigal; John L. Devaney; Christina Simkanin; Genevieve L. Noyce; Meng Lu; Grace M. Cott;doi: 10.1002/ppp3.10578
Societal Impact StatementThe invasive species S. alterniflora and P. australis are fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found that Spartina and Phragmites increase methane but not nitrous oxide emissions, with Phragmites having a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates.Summary Globally, Spartina alterniflora and Phragmites australis are among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats. We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands. Our results show that both invasive species increase CH4 fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2 and N2O fluxes. The magnitude of emissions from Spartina and Phragmites differs among native habitats. GHG fluxes, soil carbon and plant biomass of Spartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4). This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ppp3.10578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ppp3.10578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Wiley Publicly fundedFunded by:IRCIRCJohn L. Devaney; John L. Devaney; Christina Simkanin; Ian C. Davidson; Grace M. Cott; Grace M. Cott;doi: 10.1111/gcb.14426
pmid: 30270555
AbstractHuman‐caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats—collectively known as “blue carbon” and coastal vegetated habitats (CVHs)—are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem‐based management of these systems. In a global meta‐analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat‐level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invadedCVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C‐forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C‐rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter‐directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta‐analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 65 citations 65 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Ireland, United KingdomPublisher:Public Library of Science (PLoS) Publicly fundedBond-Lamberty, Ben; Devaney, John L.; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John;Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/109004/1/109004.pdfData sources: CORE (RIOXX-UK Aggregator)MURAL - Maynooth University Research Archive LibraryArticle . 2015 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryCork Open Research Archive (CORA)Article . 2015License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0133583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/109004/1/109004.pdfData sources: CORE (RIOXX-UK Aggregator)MURAL - Maynooth University Research Archive LibraryArticle . 2015 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryCork Open Research Archive (CORA)Article . 2015License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0133583&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: M...NSF| Collaborative Research: Multi-Scale Drivers and Effects of Biotic Change in the Global Mangrove-Saltmarsh EcotoneJohn L. Devaney; Michael Lehmann; Michael Lehmann; Ilka C. Feller; John D. Parker;doi: 10.1002/ecy.1979
pmid: 28779524
AbstractRecent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze‐sensitive mangrove‐saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming‐induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation‐microclimate interactions as important moderators of climate driven range shifts.
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2017 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryMaynooth University ePrints and eTheses Archive (National University of Ireland)Article . 2017License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2017 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryMaynooth University ePrints and eTheses Archive (National University of Ireland)Article . 2017License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu