- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Tadeusz Czech; Anatol Jaworek; Andrzej Krupa; Ł. Sliwiński; Arkadiusz T. Sobczyk; A. Marchewicz;Abstract The paper presents experimental results of the investigation of agglomeration of PM2.5 fly ash particles with larger particles in an electrostatic agglomerator. SEM micrographs of the obtained agglomerates shown that a single particle of the size of 10-20 μm can collect more than 20-50 PM2.5 particles in this type of agglomerator. The experiments were carried out in a semi-industrial scale channel of a cross section of about 600 mm height and 1100 mm width. The agglomerator can be used as a particle precharger in a hybrid system or as the first stage in a two-stage electrostatic precipitator, in order to increase their total collection efficiency.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1322/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1322/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV A. Marchewicz; Anatol Jaworek; Tadeusz Czech; Andrzej Krupa; Arkadiusz T. Sobczyk;Abstract In this paper, lab and commercial constructions of electrostatic precipitators used for the removal of fly ash particles from small residential boilers have been reviewed. The presented solutions were evaluated in terms of removal efficiency, exploitation conditions or expected maintenance costs. Boilers used for household heating are the main sources of air contamination by particulate matter during winter seasons in many countries. The collection efficiency of such devices should be higher than 95% to comply with the ECODESIGN emission limit, and the emission level for biomass
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Anatol Jaworek; Arkadiusz T. Sobczyk; Andrzej Krupa; Artur Marchewicz; Tadeusz Czech; Łukasz Śliwiński; Grzegorz Boryczko;Abstract The paper presents results of the tests of a novel type, semi-industrial scale hybrid electrostatic filtration system, called HYBRYDA+. The hybrid system comprised of conventional electrostatic precipitator, kinematic electrostatic agglomerator and bag filter. In this system, the bag filter, can remove not only microparticles but also submicron and nanoparticles attached to larger particles in the process of agglomeration. The system was installed at a by-pass of an exhaust gas conveying duct downstream of a 225 MWe power plant unit with coal-fired boiler, in a power plant South Poland. HT ELPI®+ impactor was used for the measurement particle size distribution. The collection efficiency of this system for PM2.5 particles was increased by the reduced pressure drop across the filter. The frequency of bag filter regeneration was reduced by about 82%. The rate of increase of the pressure drop across bag filter was about five times lower than for the same bag filter operating without electrostatic precipitator and electrostatic agglomerator, and the regeneration period of the filter increased from about 7 min to 35 min. The energy consumption required for filter regeneration can be reduced and the lifetime of bags can be longer in this system.
Journal of Electrost... arrow_drop_down Journal of ElectrostaticsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elstat.2021.103628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Electrost... arrow_drop_down Journal of ElectrostaticsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elstat.2021.103628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: A. Krupa; A. Jaworek;Journal of Aerosol S... arrow_drop_down Journal of Aerosol ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0021-8502(99)80200-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Aerosol S... arrow_drop_down Journal of Aerosol ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0021-8502(99)80200-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Tadeusz Czech; Anatol Jaworek; Andrzej Krupa; Ł. Śliwiński; D. Kluk; A. Marchewicz; Adam Charchalis; A. Ottawa; Arkadiusz T. Sobczyk;Abstract Semi industrial-scale, two-stage electrostatic precipitation system comprised of unipolar electrostatic agglomerator and electrostatic precipitator was investigated in this paper. In this type of agglomerator, the process of particle charging and their agglomeration is accomplished in the same device. The particles are charged by ion current in alternating electric field, and agglomerated due to their oscillatory motion in this field, perpendicular to the gas flow. The charged and agglomerated particles are collected in the next stage, which is a conventional electrostatic precipitator with spiked wire discharge electrodes and collection electrodes of the sigma type. Collection efficiency of this system was measured for different gas temperatures, different fly ash concentrations and for various magnitudes of AC voltage applied to the agglomerator. Two-stage electrostatic precipitator allows obtaining higher fractional collection efficiency for PM1 and PM2.5 particles than a one-stage electrostatic precipitator. In this type of two-stage electrostatic precipitator with an agglomerator, the number collection efficiency for fly ash particles in PM10, PM2.5 and PM1 size ranges was about 96%, 96% and 94%, respectively, and mass collection efficiency in same size ranges was 98%, 97% and 95%, respectively.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Tadeusz Czech; Anatol Jaworek; Andrzej Krupa; Ł. Sliwiński; Arkadiusz T. Sobczyk; A. Marchewicz;Abstract The paper presents experimental results of the investigation of agglomeration of PM2.5 fly ash particles with larger particles in an electrostatic agglomerator. SEM micrographs of the obtained agglomerates shown that a single particle of the size of 10-20 μm can collect more than 20-50 PM2.5 particles in this type of agglomerator. The experiments were carried out in a semi-industrial scale channel of a cross section of about 600 mm height and 1100 mm width. The agglomerator can be used as a particle precharger in a hybrid system or as the first stage in a two-stage electrostatic precipitator, in order to increase their total collection efficiency.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1322/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1322/1/012012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV A. Marchewicz; Anatol Jaworek; Tadeusz Czech; Andrzej Krupa; Arkadiusz T. Sobczyk;Abstract In this paper, lab and commercial constructions of electrostatic precipitators used for the removal of fly ash particles from small residential boilers have been reviewed. The presented solutions were evaluated in terms of removal efficiency, exploitation conditions or expected maintenance costs. Boilers used for household heating are the main sources of air contamination by particulate matter during winter seasons in many countries. The collection efficiency of such devices should be higher than 95% to comply with the ECODESIGN emission limit, and the emission level for biomass
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Anatol Jaworek; Arkadiusz T. Sobczyk; Andrzej Krupa; Artur Marchewicz; Tadeusz Czech; Łukasz Śliwiński; Grzegorz Boryczko;Abstract The paper presents results of the tests of a novel type, semi-industrial scale hybrid electrostatic filtration system, called HYBRYDA+. The hybrid system comprised of conventional electrostatic precipitator, kinematic electrostatic agglomerator and bag filter. In this system, the bag filter, can remove not only microparticles but also submicron and nanoparticles attached to larger particles in the process of agglomeration. The system was installed at a by-pass of an exhaust gas conveying duct downstream of a 225 MWe power plant unit with coal-fired boiler, in a power plant South Poland. HT ELPI®+ impactor was used for the measurement particle size distribution. The collection efficiency of this system for PM2.5 particles was increased by the reduced pressure drop across the filter. The frequency of bag filter regeneration was reduced by about 82%. The rate of increase of the pressure drop across bag filter was about five times lower than for the same bag filter operating without electrostatic precipitator and electrostatic agglomerator, and the regeneration period of the filter increased from about 7 min to 35 min. The energy consumption required for filter regeneration can be reduced and the lifetime of bags can be longer in this system.
Journal of Electrost... arrow_drop_down Journal of ElectrostaticsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elstat.2021.103628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Electrost... arrow_drop_down Journal of ElectrostaticsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.elstat.2021.103628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: A. Krupa; A. Jaworek;Journal of Aerosol S... arrow_drop_down Journal of Aerosol ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0021-8502(99)80200-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Aerosol S... arrow_drop_down Journal of Aerosol ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0021-8502(99)80200-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Tadeusz Czech; Anatol Jaworek; Andrzej Krupa; Ł. Śliwiński; D. Kluk; A. Marchewicz; Adam Charchalis; A. Ottawa; Arkadiusz T. Sobczyk;Abstract Semi industrial-scale, two-stage electrostatic precipitation system comprised of unipolar electrostatic agglomerator and electrostatic precipitator was investigated in this paper. In this type of agglomerator, the process of particle charging and their agglomeration is accomplished in the same device. The particles are charged by ion current in alternating electric field, and agglomerated due to their oscillatory motion in this field, perpendicular to the gas flow. The charged and agglomerated particles are collected in the next stage, which is a conventional electrostatic precipitator with spiked wire discharge electrodes and collection electrodes of the sigma type. Collection efficiency of this system was measured for different gas temperatures, different fly ash concentrations and for various magnitudes of AC voltage applied to the agglomerator. Two-stage electrostatic precipitator allows obtaining higher fractional collection efficiency for PM1 and PM2.5 particles than a one-stage electrostatic precipitator. In this type of two-stage electrostatic precipitator with an agglomerator, the number collection efficiency for fly ash particles in PM10, PM2.5 and PM1 size ranges was about 96%, 96% and 94%, respectively, and mass collection efficiency in same size ranges was 98%, 97% and 95%, respectively.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2017.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu