- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Czech Republic, ItalyPublisher:Wiley Gabriel Sangüesa‐Barreda; Jan Esper; Ulf Büntgen; J. Julio Camarero; Alfredo Di Filippo; Michele Baliva; Gianluca Piovesan;AbstractLong‐term tree recruitment dynamics of subalpine forests mainly depend on temperature changes, but little is known about the feedbacks between historical land use and climate. Here, we analyze a southern European, millennium‐long dataset of tree recruitment from three high‐elevation pine forests located in Mediterranean mountains (Pyrenees, northeastern Spain; Pollino, southern Italy; and Mt. Smolikas, northern Greece). We identify synchronized recruitment peaks in the late 15th and early 16th centuries, following prolonged periods of societal and climate instability. Major European population crises in the 14th and 15th centuries associated with recurrent famines, the Black Death pandemic, and political turmoil are likely to have reduced the deforestation of subalpine environments and caused widespread rewilding. We suggest that a distinct cold phase in the Little Ice Age around 1450 ce could also have accelerated the cessation of grazing pressure, particularly in the Pyrenees, where the demographic crisis was less severe. Most pronounced in the Pyrenees, the enhanced pine recruitment from around 1500–1550 ce coincides with temporarily warmer temperatures associated with a positive phase of the North Atlantic Oscillation. We diagnose that a mixture of human and climate factors has influenced past forest recruitment dynamics in Mediterranean subalpine ecosystems. Our results highlight how complex human–climate interactions shaped forest dynamics during pre‐industrial times and provide historical analogies to recent rewilding.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NorwayPublisher:Elsevier BV J. Julio Camarero; Antonio Gazol; Gabriel Sangüesa-Barreda; Marta Vergarechea; Raquel Alfaro-Sánchez; Nicolás Cattaneo; Sergio M. Vicente-Serrano;handle: 11250/2983096
Abstract Background Equatorward, rear-edge tree populations are natural monitors to estimate species vulnerability to climate change. According to biogeographical theory, exposition to drought events increases with increasing aridity towards the equator and the growth of southern tree populations will be more vulnerable to drought than in central populations. However, the ecological and biogeographical margins can mismatch due to the impact of ecological factors (topography, soils) or tree-species acclimation that can blur large-scale geographical imprints in trees responses to drought making northern populations more drought limited. Methods We tested these ideas in six tree species, three angiosperms (Fagus sylvatica, Quercus robur, Quercus petraea) and three gymnosperms (Abies alba, Pinus sylvestris and Pinus uncinata) by comparing rear-edge tree populations subjected to different degrees of aridity. We used dendrochronology to compare the radial-growth patterns of these species in northern, intermediate, and southern tree populations at the continental rear edge. Results and conclusions We found marked variations in growth variability between species with coherent patterns of stronger drought signals in the tree-ring series of the southern populations of F. sylvatica, P. sylvestris, and A. alba. This was also observed in species from cool-wet sites (P. uncinata and Q. robur), despite their limited responsiveness to drought. However, in the case of Q. petraea the intermediate population showed the strongest relationship to drought. For drought-sensitive species as F. sylvatica and P. sylvestris, southern populations presented more variable growth which was enhanced by cool-wet conditions from late spring to summer. We found a trend of enhanced vulnerability to drought in these two species. The response of tree growth to drought has a marked biogeographical component characterized by increased drought sensitivity in southern populations even within the species distribution rear edge. Nevertheless, the relationship between tree growth and drought varied between species suggesting that biogeographical and ecological limits do not always overlap as in the case of Q. petraea. In widespread species showing enhanced vulnerability to drought, as F. sylvatica and P. sylvestris, increased vulnerability to climate warming in their rear edges is forecasted. Therefore, we encourage the monitoring and conservation of such marginal tree populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00303-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00303-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Oxford University Press (OUP) Authors: J. Julio Camarero; Gabriel Sangüesa-Barreda; Santiago Sancho-Benages; Antonio Gazol;Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs).A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits.The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen.The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcv124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcv124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Fidel González Rouco; Antonio Gazol; Kristina Seftigen; Emilia Gutiérrez; Gabriel Sangüesa-Barreda; Laia Andreu-Hayles; Juan Carlos Linares; Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; J. Julio Camarero;doi: 10.1111/gcb.13541
pmid: 27782362
AbstractGrowth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir,Abies alba; Scots pine,Pinus sylvestris; and mountain pine,Pinus uncinata) in mountainous areas ofNESpain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensemblesCO2emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of −10.7% and −16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV José Antonio López-Sáez; Mar Génova; J. Julio Camarero; Raúl Sánchez-Salguero; Emilia Gutiérrez; Gabriel Sangüesa-Barreda; Gabriel Sangüesa-Barreda; Pedro A. Tíscar; Juan Carlos Linares; Montserrat Ribas;The effects of climate change on forest growth are not homogeneous across tree species distribution ranges because of inter-population variability and spatial heterogeneity. Although latitudinal and thermal gradients in growth patterns have been widely investigated, changes in these patterns along longitudinal gradients due to the different timing and severity of regional droughts are less studied. Here, we investigated these responses in Mediterranean Black pine (Pinus nigra Arn.). We built a tree-ring width dataset comprising 77 forests (1202 trees) across the Mediterranean Basin. The biogeographical patterns in growth patterns and the relationships between growth and mean temperature, precipitation, drought and atmospheric circulations patterns (NAO -North Atlantic Oscillation-, SOI -Southern Oscillation Index- and MOI -Mediterranean Oscillation index-) were analyzed. Then, we evaluated the spatial and temporal growth synchrony between and within east and west populations. We found different growth and climate patterns in west vs. east Black pine populations, although in both regions growth was driven by similar temperature and precipitation variables. MOI significantly influenced tree growth, whilst NAO and SOI showed weaker effects. Growth of east and west Black pine populations desynchronized after the 1970s when several and uncoupled regional droughts occurred across the Mediterranean Basin. We detected a climate shift from the 1970s to the 1980s affecting growth patterns, changing growth-climate relationships, and reducing forest growth from west to east Black pine forests. Afterwards, climate and growth of east and west populations became increasingly more divergent. Our findings imply that integral bioclimatic and biogeographical analyses across the species distribution area must be considered to adequately assess the impact of climate change on tree growth under warming and more arid conditions.
The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRepositorio Documental de la Universidad de ValladolidArticle . 2019Data sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 26 Powered bymore_vert The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRepositorio Documental de la Universidad de ValladolidArticle . 2019Data sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; José A. Carreira; José Seco; J. Julio Camarero; Benjamín Viñegla; Lahcen Taïqui; Gabriel Sangüesa-Barreda; Víctor Lechuga; Juan Carlos Linares;pmid: 33082041
Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δ13C and total nitrogen δ15N of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δ13C and δ15N showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.142752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.142752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Wiley Authors: Camarero Martínez, Jesús Julio; Gazol, A.; Galván Candela, Juan Diego; Sangüesa-Barreda, Gabriel; +1 AuthorsCamarero Martínez, Jesús Julio; Gazol, A.; Galván Candela, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez Merino, Emilia;AbstractTheory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2014Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 112visibility views 112 download downloads 262 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2014Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Italy, SpainPublisher:Elsevier BV Antonio Gazol; Michele Colangelo; Michele Colangelo; Cristina Valeriano; J. Julio Camarero; Alex Fajardo; Juan Carlos Linares; Gabriel Sangüesa-Barreda; Raúl Sánchez-Salguero; Teresa E. Gimeno; Elena Granda;Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11563/188317Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11563/188317Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Argentina, Russian Federation, Finland, Russian Federation, Portugal, Netherlands, Spain, Slovenia, Spain, France, France, Finland, Switzerland, Spain, Spain, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:AKA | Past Trends and Future Po..., EC | PHLOEMAP, FCT | SFRH/BPD/70632/2010 +2 projectsAKA| Past Trends and Future Potential of Forest Production in Finland ,EC| PHLOEMAP ,FCT| SFRH/BPD/70632/2010 ,MESTD| Studying climate change and its influence on environment: impacts, adaptation and mitigation ,EC| TreEsilienceTom Levanič; Juan Carlos Linares; Koen Kramer; Tuomas Aakala; Andreas Papadopoulos; Gabriel Sangüesa-Barreda; Christof Bigler; Dejan Stojanović; Katarina Čufar; Tamir Klein; Jordi Martínez-Vilalta; Steven Jansen; Laurel J. Haavik; Mariano M. Amoroso; Lucía DeSoto; Lucía DeSoto; Guillermo Gea-Izquierdo; J. Julio Camarero; Thomas Kitzberger; Thomas Kitzberger; Sten Gillner; Brigitte Rohner; Brigitte Rohner; Frank J. Sterck; Maxime Cailleret; Maxime Cailleret; Maxime Cailleret; Maria Laura Suarez; Ricardo Villalba; Vyacheslav I. Kharuk; Vyacheslav I. Kharuk; Harri Mäkinen; Walter Oberhuber; Jeffrey M. Kane; Elisabeth M. R. Robert; Elisabeth M. R. Robert; Ana-Maria Hereş;AbstractSevere droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 61visibility views 61 download downloads 99 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Czech Republic, ItalyPublisher:Wiley Gabriel Sangüesa‐Barreda; Jan Esper; Ulf Büntgen; J. Julio Camarero; Alfredo Di Filippo; Michele Baliva; Gianluca Piovesan;AbstractLong‐term tree recruitment dynamics of subalpine forests mainly depend on temperature changes, but little is known about the feedbacks between historical land use and climate. Here, we analyze a southern European, millennium‐long dataset of tree recruitment from three high‐elevation pine forests located in Mediterranean mountains (Pyrenees, northeastern Spain; Pollino, southern Italy; and Mt. Smolikas, northern Greece). We identify synchronized recruitment peaks in the late 15th and early 16th centuries, following prolonged periods of societal and climate instability. Major European population crises in the 14th and 15th centuries associated with recurrent famines, the Black Death pandemic, and political turmoil are likely to have reduced the deforestation of subalpine environments and caused widespread rewilding. We suggest that a distinct cold phase in the Little Ice Age around 1450 ce could also have accelerated the cessation of grazing pressure, particularly in the Pyrenees, where the demographic crisis was less severe. Most pronounced in the Pyrenees, the enhanced pine recruitment from around 1500–1550 ce coincides with temporarily warmer temperatures associated with a positive phase of the North Atlantic Oscillation. We diagnose that a mixture of human and climate factors has influenced past forest recruitment dynamics in Mediterranean subalpine ecosystems. Our results highlight how complex human–climate interactions shaped forest dynamics during pre‐industrial times and provide historical analogies to recent rewilding.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NorwayPublisher:Elsevier BV J. Julio Camarero; Antonio Gazol; Gabriel Sangüesa-Barreda; Marta Vergarechea; Raquel Alfaro-Sánchez; Nicolás Cattaneo; Sergio M. Vicente-Serrano;handle: 11250/2983096
Abstract Background Equatorward, rear-edge tree populations are natural monitors to estimate species vulnerability to climate change. According to biogeographical theory, exposition to drought events increases with increasing aridity towards the equator and the growth of southern tree populations will be more vulnerable to drought than in central populations. However, the ecological and biogeographical margins can mismatch due to the impact of ecological factors (topography, soils) or tree-species acclimation that can blur large-scale geographical imprints in trees responses to drought making northern populations more drought limited. Methods We tested these ideas in six tree species, three angiosperms (Fagus sylvatica, Quercus robur, Quercus petraea) and three gymnosperms (Abies alba, Pinus sylvestris and Pinus uncinata) by comparing rear-edge tree populations subjected to different degrees of aridity. We used dendrochronology to compare the radial-growth patterns of these species in northern, intermediate, and southern tree populations at the continental rear edge. Results and conclusions We found marked variations in growth variability between species with coherent patterns of stronger drought signals in the tree-ring series of the southern populations of F. sylvatica, P. sylvestris, and A. alba. This was also observed in species from cool-wet sites (P. uncinata and Q. robur), despite their limited responsiveness to drought. However, in the case of Q. petraea the intermediate population showed the strongest relationship to drought. For drought-sensitive species as F. sylvatica and P. sylvestris, southern populations presented more variable growth which was enhanced by cool-wet conditions from late spring to summer. We found a trend of enhanced vulnerability to drought in these two species. The response of tree growth to drought has a marked biogeographical component characterized by increased drought sensitivity in southern populations even within the species distribution rear edge. Nevertheless, the relationship between tree growth and drought varied between species suggesting that biogeographical and ecological limits do not always overlap as in the case of Q. petraea. In widespread species showing enhanced vulnerability to drought, as F. sylvatica and P. sylvestris, increased vulnerability to climate warming in their rear edges is forecasted. Therefore, we encourage the monitoring and conservation of such marginal tree populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00303-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00303-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Oxford University Press (OUP) Authors: J. Julio Camarero; Gabriel Sangüesa-Barreda; Santiago Sancho-Benages; Antonio Gazol;Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs).A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits.The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen.The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcv124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcv124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Fidel González Rouco; Antonio Gazol; Kristina Seftigen; Emilia Gutiérrez; Gabriel Sangüesa-Barreda; Laia Andreu-Hayles; Juan Carlos Linares; Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; J. Julio Camarero;doi: 10.1111/gcb.13541
pmid: 27782362
AbstractGrowth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir,Abies alba; Scots pine,Pinus sylvestris; and mountain pine,Pinus uncinata) in mountainous areas ofNESpain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensemblesCO2emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of −10.7% and −16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV José Antonio López-Sáez; Mar Génova; J. Julio Camarero; Raúl Sánchez-Salguero; Emilia Gutiérrez; Gabriel Sangüesa-Barreda; Gabriel Sangüesa-Barreda; Pedro A. Tíscar; Juan Carlos Linares; Montserrat Ribas;The effects of climate change on forest growth are not homogeneous across tree species distribution ranges because of inter-population variability and spatial heterogeneity. Although latitudinal and thermal gradients in growth patterns have been widely investigated, changes in these patterns along longitudinal gradients due to the different timing and severity of regional droughts are less studied. Here, we investigated these responses in Mediterranean Black pine (Pinus nigra Arn.). We built a tree-ring width dataset comprising 77 forests (1202 trees) across the Mediterranean Basin. The biogeographical patterns in growth patterns and the relationships between growth and mean temperature, precipitation, drought and atmospheric circulations patterns (NAO -North Atlantic Oscillation-, SOI -Southern Oscillation Index- and MOI -Mediterranean Oscillation index-) were analyzed. Then, we evaluated the spatial and temporal growth synchrony between and within east and west populations. We found different growth and climate patterns in west vs. east Black pine populations, although in both regions growth was driven by similar temperature and precipitation variables. MOI significantly influenced tree growth, whilst NAO and SOI showed weaker effects. Growth of east and west Black pine populations desynchronized after the 1970s when several and uncoupled regional droughts occurred across the Mediterranean Basin. We detected a climate shift from the 1970s to the 1980s affecting growth patterns, changing growth-climate relationships, and reducing forest growth from west to east Black pine forests. Afterwards, climate and growth of east and west populations became increasingly more divergent. Our findings imply that integral bioclimatic and biogeographical analyses across the species distribution area must be considered to adequately assess the impact of climate change on tree growth under warming and more arid conditions.
The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRepositorio Documental de la Universidad de ValladolidArticle . 2019Data sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 26 Powered bymore_vert The Science of The T... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRepositorio Documental de la Universidad de ValladolidArticle . 2019Data sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Belgium, France, Australia, Italy, Australia, United Kingdom, United Kingdom, France, Finland, Spain, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PERS-RELICT-CLIMEC| PERS-RELICT-CLIMPatrick Gonzalez; Michael Michaelian; Francisco Lloret; C. John Burk; J. Julio Camarero; Albert Vilà-Cabrera; Thomas T. Veblen; Enric Batllori; Devin P. Bendixsen; Tuomas Aakala; Francesco Ripullone; Rafael M. Navarro-Cerrillo; Lucía Galiano; Abdallah Bentouati; Joseph L. Ganey; Miranda D. Redmond; William R. L. Anderegg; Michele Colangelo; Michele Colangelo; Sandra Saura-Mas; Thomas Kitzberger; Thomas Kitzberger; George Matusick; Juan Carlos Linares; M. Lisa Floyd; Jeffrey M. Kane; Ben J. Zeeman; Caroline Vincke; Anna L. Jacobsen; R. B. Pratt; Jonathan D. Coop; Gabriel Sangüesa-Barreda; Christof Bigler; Ermias Aynekulu; Andreas Rigling; Andreas Rigling; Yamila Sasal; Roderick Fensham; Maria Laura Suarez; Suzanne B. Marchetti;pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
pmid: 33139533
pmc: PMC7703631
handle: 2078.1/237307 , 10138/324097 , 11563/145962 , 10568/110156 , 1893/31968
SignificanceForests are experiencing growing risks of drought-induced mortality in a warming world. Yet, ecosystem dynamics following drought mortality remain unknown, representing a major limitation to our understanding of the ecological consequences of climate change. We provide an emerging picture of postdrought ecological trajectories based on field indicators of forest dynamics. Replacement patterns following mortality indicate limited short-term persistence of predrought dominant tree species, highlighting the potential for major ecosystem reorganization in the coming decades. The great variability of the observed dynamics within and among species reinforces the primary influence of drought characteristics and ecosystem legacies, modulated by land use, management, and past disturbances, on ongoing drought-related species turnover and their potential implications for future forest biodiversity and ecosystem services.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/83d1k74hData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11563/145962Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/110156Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/31968Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiahttps://dx.doi.org/10.26181/5f...Other literature type . 2020License: CC BY NC NDData sources: DataciteUniversità degli Studi della Basilicata: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2002314117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Raúl Sánchez-Salguero; Raúl Sánchez-Salguero; José A. Carreira; José Seco; J. Julio Camarero; Benjamín Viñegla; Lahcen Taïqui; Gabriel Sangüesa-Barreda; Víctor Lechuga; Juan Carlos Linares;pmid: 33082041
Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δ13C and total nitrogen δ15N of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δ13C and δ15N showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.142752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.142752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Wiley Authors: Camarero Martínez, Jesús Julio; Gazol, A.; Galván Candela, Juan Diego; Sangüesa-Barreda, Gabriel; +1 AuthorsCamarero Martínez, Jesús Julio; Gazol, A.; Galván Candela, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez Merino, Emilia;AbstractTheory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2014Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 112visibility views 112 download downloads 262 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2014Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Italy, SpainPublisher:Elsevier BV Antonio Gazol; Michele Colangelo; Michele Colangelo; Cristina Valeriano; J. Julio Camarero; Alex Fajardo; Juan Carlos Linares; Gabriel Sangüesa-Barreda; Raúl Sánchez-Salguero; Teresa E. Gimeno; Elena Granda;Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11563/188317Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11563/188317Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Argentina, Russian Federation, Finland, Russian Federation, Portugal, Netherlands, Spain, Slovenia, Spain, France, France, Finland, Switzerland, Spain, Spain, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:AKA | Past Trends and Future Po..., EC | PHLOEMAP, FCT | SFRH/BPD/70632/2010 +2 projectsAKA| Past Trends and Future Potential of Forest Production in Finland ,EC| PHLOEMAP ,FCT| SFRH/BPD/70632/2010 ,MESTD| Studying climate change and its influence on environment: impacts, adaptation and mitigation ,EC| TreEsilienceTom Levanič; Juan Carlos Linares; Koen Kramer; Tuomas Aakala; Andreas Papadopoulos; Gabriel Sangüesa-Barreda; Christof Bigler; Dejan Stojanović; Katarina Čufar; Tamir Klein; Jordi Martínez-Vilalta; Steven Jansen; Laurel J. Haavik; Mariano M. Amoroso; Lucía DeSoto; Lucía DeSoto; Guillermo Gea-Izquierdo; J. Julio Camarero; Thomas Kitzberger; Thomas Kitzberger; Sten Gillner; Brigitte Rohner; Brigitte Rohner; Frank J. Sterck; Maxime Cailleret; Maxime Cailleret; Maxime Cailleret; Maria Laura Suarez; Ricardo Villalba; Vyacheslav I. Kharuk; Vyacheslav I. Kharuk; Harri Mäkinen; Walter Oberhuber; Jeffrey M. Kane; Elisabeth M. R. Robert; Elisabeth M. R. Robert; Ana-Maria Hereş;AbstractSevere droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 61visibility views 61 download downloads 99 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital Repository of University of ZaragozaArticle . 2020License: CC BYData sources: Digital Repository of University of ZaragozaHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Siberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu