- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Shirong Liu; Jingxin Wang; Richard J. Harper; Jamie L. Schuler; Zhen Yu; Zhen Yu; Nicolas Zegre; Pengsen Sun; Xiaohua Wei;doi: 10.1111/gcb.14484
pmid: 30338613
AbstractLarge‐scale planted forests (PF) have been given a higher priority in China for improving the environment and mitigating climate change relative to natural forests (NF). However, the ecological consequences of these PF on water resource security have been less considered in the national scale. Moreover, a critically needed comparison on key ecological effects between PF and NF under climate change has rarely been conducted. Here, we compare carbon sequestration and water consumption in PF and NF across China using combination of remote sensing and field inventory. We found that, on average, NF consumed 6.8% (37.5 mm per growing season) less water but sequestered 1.1% (12.5 g C m−2 growing season−1) more carbon than PF in the period of 2000–2012. While there was no significant difference in water consumption (p = 0.6) between PF and NF in energy‐limited areas (dryness index [DI] < 1), water consumption was significantly (p < 0.001) higher in PF than that in NF in water‐limited regions (DI > 1). Moreover, a distinct and larger shift of water yield was identified in PF than in NF from the 1980s to the 2000s, indicating that PF were more sensitive to climate change, leading to a higher water consumption when compared with NF. Our results suggest NF should be properly valued in terms of maximizing the benefits of carbon sequestration and water yield. Future forest plantation projects should be planned with caution, particularly in water‐limited regions where they might have less positive effect on carbon sequestration but lead to significant water yield reduction.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhen Yu; Weibin You; Evgenios Agathokleous; Guoyi Zhou; Shirong Liu;Abstract Background Forest is the largest biomass carbon (C) pool in China, taking up a substantial amount of atmospheric carbon dioxide. Although it is well understood that planted forests (PFs) act as a large C sink, the contribution of human management to C storage enhancement remains obscure. Moreover, existing projections of forest C dynamics suffer from spatially inconsistent age and type information or neglected human management impacts. In this study, using developed PF age and type maps and data collected from 1371 forest plantation sites in China, we simulated biomass C stock change and quantified management impacts for the time period 2010–2050. Results Results show that future forest biomass C increment might have been overestimated by 32.5%–107.5% in former studies. We also found that age-related growth will be by far the largest contributor to PF biomass C increment from 2010 to 2050 (1.23 ± 0.002 Pg C, 1 Pg = 1015 g = 1 billion metric tons), followed by the impact of human management (0.57 ± 0.02 Pg C), while the contribution of climate is slight (0.087 ± 0.04 Pg C). Besides, an additional 0.24 ± 0.07 Pg C can be stored if current PFs are all managed by 2050, resulting in a total increase of 2.13 ± 0.05 Pg C. Conclusions Forest management and age-related growth dominate the biomass C change in PFs, while the effect of climatic factors on the accumulation is minor. To achieve the ambitious goal of forest C stock enhancement by 3.5 Pg from 2020 to 2050, we advocate to improve the management of existing forests and reduce the requests for more lands for forest expansion, which helps mitigate potential conflicts with agricultural sectors. Our results highlight that appropriate planning and management are required for sustaining and enhancing biomass C sequestration in China’s PF.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00335-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00335-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Yuan Zhao; Xu Yue; Hao Zhou; Zhen Yu; Wenping Yuan;Abstract As one of the most densely populated and economically developed regions in China, Yangtze River Delta (YRD) has confronted with substantial land cover change (LCC) over the past several decades. This study investigates the impact of climate change and LCC on carbon dynamics in the YRD region for 1990–2019, taking advantage of a high-resolution vegetation model and two well-established LCC data in China. Simulated gross primary productivity increases from 0.52 ± 0.02 Pg[C] yr−1 in the 1990s to 0.57 ± 0.01 Pg[C] yr−1 in the 2010s with the major contribution by CO2 fertilization effect. The regional carbon sink, measured as net biospheric productivity (NBP), peaks at 0.03 Pg[C] yr−1 in the 2000s but remains stable or slightly decreases in the 2010s depending on the LCC datasets. Forests act as the main contributors to the enhancement of the regional carbon sink, with negative contributions from the loss of shrubland and grassland. The stable NBP during 2000–2019 suggests a potential slowdown in the efficacy of carbon sink as forests mature. While forest expansion significantly promotes NBP, the carbon released during the replacement of other vegetation types suggests that afforestation efforts need to be complemented with associated supportive measures to prevent newly forested areas from becoming net carbon sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6e08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6e08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2017Publisher:PANGAEA Authors: Cao, Peiyu; Lu, Chaoqun; Yu, Zhen;To facilitate earth system modeling and inventory-based studies, we developed a spatially explicit time-series data set of nitrogen (N) fertilizer use in agricultural land of the continental U.S. during 1850 to 2015. The spatial resolution of this data set is 5km × 5km, and the time step is annually. Through gap-filling, we reconstructed the state-level crop-specific N fertilizer use history by harmonizing national and state-level N fertilizer use data from multiple data sources. We then spatialized and resampled N fertilizer use data to 5km × 5km gridded maps based on historical land cover data of the continental U.S. developed by Yu and Lu (2017). This data indicated that N fertilizer use rates of the U.S. increased by 34 times from 1940 to 2015. Geospatial analysis revealed that the hotspots of N fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains during the past century. Supplement to: Cao, Peiyu; Lu, Chaoqun; Yu, Zhen (2018): Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth System Science Data, 10(2), 969-984
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2021Publisher:figshare Yu, Zhen; You, Weibin; Agathokleous, Evgenios; Zhou, Guoyi; Liu, Shirong;Additional file 1.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15145647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15145647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Zhen Yu; Shirong Liu; Haikui Li; Jingjing Liang; Weiguo Liu; Shilong Piao; Hanqin Tian; Guoyi Zhou; Chaoqun Lü; You Wang; Sun Park; Yanli Dong; Stephen Sitch; Evgenios Agathokleous;AbstractForest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1–3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.
Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-47143-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-47143-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Weibin You; Ziyi Xian; Guoyi Zhou; Evgenios Agathokleous; Zhen Yu;Background: Shifts in forest phenological events serve as strong indicators of climate change. However, the sensitivity of phenology events to climate change in relation to forest origins has received limited attention. Moreover, it is unknown whether forest phenology changes with the proximity to forest edge. Methods: This study examined the green-up dates, dormancy dates, time-integrated NDVI (LiNDVI, a measure of vegetation productivity in growing season), and their sensitivities to climatic factors along the gradients of distance (i.e. proximity) to forest edge (0–2 km) in China's natural forests (NF) and planted forests (PF). For the analysis, field-surveyed data were integrated with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI from 2000 to 2022. Results: Our results reveal that PF had earlier green-up dates, later dormancy dates, and higher LiNDVI than NF. However, green-up sensitivities to temperature were higher at the edges of NF, whereas no such pattern was observed in PF. Conversely, the sensitivity of dormancy dates remains relatively stable from the inner to the edge of both NF and PF, except for a quadratic change in dormancy date sensitivity to precipitation found in NF. Additionally, we found that the green-up sensitivity to temperature increased with decreasing proximity to edge in NF evergreen forests, while it showed the opposite trend in PF evergreen forests. Furthermore, we observed that the precipitation impact on green-up dates shifts from postponing to advancing from the inner to the edge of NF, whereas precipitation dominantly postpones PF's green-up dates regardless of the proximity to edge. The LiNDVI exhibits higher sensitivity to precipitation at the edge areas, a phenomenon observed in NF but not in PF. Conclusions: These results suggest that the responses of forests to climate change vary with the distance to the edge. With increasing edge forests, which results from fragmentation caused by global changes, we anticipate that desynchronized phenological events along the distance to the edge could alter biogeochemical cycles and reshape ecosystem services such as energy flows, pollination duration, and the tourism industry. Therefore, we advocate for further investigations of edge effects to improve ecosystem modelling, enhance forest stability, and promote sustainable tourism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fecs.2023.100144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fecs.2023.100144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United StatesPublisher:Copernicus GmbH Authors: Peiyu Cao; Chaoqun Lu; Zhen Yu;handle: 20.500.12876/23236
Abstract. A tremendous amount of anthropogenic nitrogen (N) fertilizer has been applied to agricultural lands to promote crop production in the US since the 1850s. However, inappropriate N management practices have caused numerous ecological and environmental problems which are difficult to quantify due to the paucity of spatially explicit time-series fertilizer use maps. Understanding and assessing N fertilizer management history could provide important implications for enhancing N use efficiency and reducing N loss. In this study, we therefore developed long-term gridded maps to depict crop-specific N fertilizer use rates, application timing, and the fractions of ammonium N (NH4+-N) and nitrate N (NO3−-N) used across the contiguous US at a resolution of 5 km × 5 km during the period from 1850 to 2015. We found that N use rates in the US increased from 0.22 g N m−2 yr−1 in 1940 to 9.04 g N m−2 yr−1 in 2015. Geospatial analysis revealed that hotspots for N fertilizer use have shifted from the southeastern and eastern US to the Midwest, the Great Plains, and the Northwest over the past century. Specifically, corn in the Corn Belt region received the most intensive N input in spring, followed by the application of a large amount of N in fall, implying a high N loss risk in this region. Moreover, spatial-temporal fraction of NH4+-N and NO3−-N varied largely among regions. Generally, farmers have increasingly favored ammonia N fertilizers over nitrate N fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess N addition impacts, and improve N management to alleviate environmental problems. Datasets used in this study are available at https://doi.org/10.1594/PANGAEA.883585.
Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-969-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-969-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Australia, United States, France, United StatesPublisher:Springer Science and Business Media LLC Zhen Yu; Philippe Ciais; Shilong Piao; Richard A. Houghton; Chaoqun Lü; Hanqin Tian; Evgenios Agathokleous; Giri Kattel; Stephen Sitch; Daniel Goll; Xu Yue; Anthony P. Walker; Pierre Friedlingstein; Atul K. Jain; Shirong Liu; Guoyi Zhou;AbstractCarbon budget accounting relies heavily on Food and Agriculture Organization land-use data reported by governments. Here we develop a new land-use and cover-change database for China, finding that differing historical survey methods biased China’s reported data causing large errors in Food and Agriculture Organization databases. Land ecosystem model simulations driven with the new data reveal a strong carbon sink of 8.9 ± 0.8 Pg carbon from 1980 to 2019 in China, which was not captured in Food and Agriculture Organization data-based estimations due to biased land-use and cover-change signals. The land-use and cover-change in China, characterized by a rapid forest expansion from 1980 to 2019, contributed to nearly 44% of the national terrestrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen deposition (12.9%), and rising carbon dioxide (8.1%) are less important contributors. This indicates that previous studies have greatly underestimated the impact of land-use and cover-change on the terrestrial carbon balance of China. This study underlines the importance of reliable land-use and cover-change databases in global carbon budget accounting.
Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36100606Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36100606Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Shirong Liu; Jingxin Wang; Richard J. Harper; Jamie L. Schuler; Zhen Yu; Zhen Yu; Nicolas Zegre; Pengsen Sun; Xiaohua Wei;doi: 10.1111/gcb.14484
pmid: 30338613
AbstractLarge‐scale planted forests (PF) have been given a higher priority in China for improving the environment and mitigating climate change relative to natural forests (NF). However, the ecological consequences of these PF on water resource security have been less considered in the national scale. Moreover, a critically needed comparison on key ecological effects between PF and NF under climate change has rarely been conducted. Here, we compare carbon sequestration and water consumption in PF and NF across China using combination of remote sensing and field inventory. We found that, on average, NF consumed 6.8% (37.5 mm per growing season) less water but sequestered 1.1% (12.5 g C m−2 growing season−1) more carbon than PF in the period of 2000–2012. While there was no significant difference in water consumption (p = 0.6) between PF and NF in energy‐limited areas (dryness index [DI] < 1), water consumption was significantly (p < 0.001) higher in PF than that in NF in water‐limited regions (DI > 1). Moreover, a distinct and larger shift of water yield was identified in PF than in NF from the 1980s to the 2000s, indicating that PF were more sensitive to climate change, leading to a higher water consumption when compared with NF. Our results suggest NF should be properly valued in terms of maximizing the benefits of carbon sequestration and water yield. Future forest plantation projects should be planned with caution, particularly in water‐limited regions where they might have less positive effect on carbon sequestration but lead to significant water yield reduction.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhen Yu; Weibin You; Evgenios Agathokleous; Guoyi Zhou; Shirong Liu;Abstract Background Forest is the largest biomass carbon (C) pool in China, taking up a substantial amount of atmospheric carbon dioxide. Although it is well understood that planted forests (PFs) act as a large C sink, the contribution of human management to C storage enhancement remains obscure. Moreover, existing projections of forest C dynamics suffer from spatially inconsistent age and type information or neglected human management impacts. In this study, using developed PF age and type maps and data collected from 1371 forest plantation sites in China, we simulated biomass C stock change and quantified management impacts for the time period 2010–2050. Results Results show that future forest biomass C increment might have been overestimated by 32.5%–107.5% in former studies. We also found that age-related growth will be by far the largest contributor to PF biomass C increment from 2010 to 2050 (1.23 ± 0.002 Pg C, 1 Pg = 1015 g = 1 billion metric tons), followed by the impact of human management (0.57 ± 0.02 Pg C), while the contribution of climate is slight (0.087 ± 0.04 Pg C). Besides, an additional 0.24 ± 0.07 Pg C can be stored if current PFs are all managed by 2050, resulting in a total increase of 2.13 ± 0.05 Pg C. Conclusions Forest management and age-related growth dominate the biomass C change in PFs, while the effect of climatic factors on the accumulation is minor. To achieve the ambitious goal of forest C stock enhancement by 3.5 Pg from 2020 to 2050, we advocate to improve the management of existing forests and reduce the requests for more lands for forest expansion, which helps mitigate potential conflicts with agricultural sectors. Our results highlight that appropriate planning and management are required for sustaining and enhancing biomass C sequestration in China’s PF.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00335-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-021-00335-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Yuan Zhao; Xu Yue; Hao Zhou; Zhen Yu; Wenping Yuan;Abstract As one of the most densely populated and economically developed regions in China, Yangtze River Delta (YRD) has confronted with substantial land cover change (LCC) over the past several decades. This study investigates the impact of climate change and LCC on carbon dynamics in the YRD region for 1990–2019, taking advantage of a high-resolution vegetation model and two well-established LCC data in China. Simulated gross primary productivity increases from 0.52 ± 0.02 Pg[C] yr−1 in the 1990s to 0.57 ± 0.01 Pg[C] yr−1 in the 2010s with the major contribution by CO2 fertilization effect. The regional carbon sink, measured as net biospheric productivity (NBP), peaks at 0.03 Pg[C] yr−1 in the 2000s but remains stable or slightly decreases in the 2010s depending on the LCC datasets. Forests act as the main contributors to the enhancement of the regional carbon sink, with negative contributions from the loss of shrubland and grassland. The stable NBP during 2000–2019 suggests a potential slowdown in the efficacy of carbon sink as forests mature. While forest expansion significantly promotes NBP, the carbon released during the replacement of other vegetation types suggests that afforestation efforts need to be complemented with associated supportive measures to prevent newly forested areas from becoming net carbon sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6e08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad6e08&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2017Publisher:PANGAEA Authors: Cao, Peiyu; Lu, Chaoqun; Yu, Zhen;To facilitate earth system modeling and inventory-based studies, we developed a spatially explicit time-series data set of nitrogen (N) fertilizer use in agricultural land of the continental U.S. during 1850 to 2015. The spatial resolution of this data set is 5km × 5km, and the time step is annually. Through gap-filling, we reconstructed the state-level crop-specific N fertilizer use history by harmonizing national and state-level N fertilizer use data from multiple data sources. We then spatialized and resampled N fertilizer use data to 5km × 5km gridded maps based on historical land cover data of the continental U.S. developed by Yu and Lu (2017). This data indicated that N fertilizer use rates of the U.S. increased by 34 times from 1940 to 2015. Geospatial analysis revealed that the hotspots of N fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains during the past century. Supplement to: Cao, Peiyu; Lu, Chaoqun; Yu, Zhen (2018): Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth System Science Data, 10(2), 969-984
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2021Publisher:figshare Yu, Zhen; You, Weibin; Agathokleous, Evgenios; Zhou, Guoyi; Liu, Shirong;Additional file 1.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15145647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.15145647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Zhen Yu; Shirong Liu; Haikui Li; Jingjing Liang; Weiguo Liu; Shilong Piao; Hanqin Tian; Guoyi Zhou; Chaoqun Lü; You Wang; Sun Park; Yanli Dong; Stephen Sitch; Evgenios Agathokleous;AbstractForest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1–3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.
Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-47143-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-47143-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Weibin You; Ziyi Xian; Guoyi Zhou; Evgenios Agathokleous; Zhen Yu;Background: Shifts in forest phenological events serve as strong indicators of climate change. However, the sensitivity of phenology events to climate change in relation to forest origins has received limited attention. Moreover, it is unknown whether forest phenology changes with the proximity to forest edge. Methods: This study examined the green-up dates, dormancy dates, time-integrated NDVI (LiNDVI, a measure of vegetation productivity in growing season), and their sensitivities to climatic factors along the gradients of distance (i.e. proximity) to forest edge (0–2 km) in China's natural forests (NF) and planted forests (PF). For the analysis, field-surveyed data were integrated with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI from 2000 to 2022. Results: Our results reveal that PF had earlier green-up dates, later dormancy dates, and higher LiNDVI than NF. However, green-up sensitivities to temperature were higher at the edges of NF, whereas no such pattern was observed in PF. Conversely, the sensitivity of dormancy dates remains relatively stable from the inner to the edge of both NF and PF, except for a quadratic change in dormancy date sensitivity to precipitation found in NF. Additionally, we found that the green-up sensitivity to temperature increased with decreasing proximity to edge in NF evergreen forests, while it showed the opposite trend in PF evergreen forests. Furthermore, we observed that the precipitation impact on green-up dates shifts from postponing to advancing from the inner to the edge of NF, whereas precipitation dominantly postpones PF's green-up dates regardless of the proximity to edge. The LiNDVI exhibits higher sensitivity to precipitation at the edge areas, a phenomenon observed in NF but not in PF. Conclusions: These results suggest that the responses of forests to climate change vary with the distance to the edge. With increasing edge forests, which results from fragmentation caused by global changes, we anticipate that desynchronized phenological events along the distance to the edge could alter biogeochemical cycles and reshape ecosystem services such as energy flows, pollination duration, and the tourism industry. Therefore, we advocate for further investigations of edge effects to improve ecosystem modelling, enhance forest stability, and promote sustainable tourism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fecs.2023.100144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fecs.2023.100144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United StatesPublisher:Copernicus GmbH Authors: Peiyu Cao; Chaoqun Lu; Zhen Yu;handle: 20.500.12876/23236
Abstract. A tremendous amount of anthropogenic nitrogen (N) fertilizer has been applied to agricultural lands to promote crop production in the US since the 1850s. However, inappropriate N management practices have caused numerous ecological and environmental problems which are difficult to quantify due to the paucity of spatially explicit time-series fertilizer use maps. Understanding and assessing N fertilizer management history could provide important implications for enhancing N use efficiency and reducing N loss. In this study, we therefore developed long-term gridded maps to depict crop-specific N fertilizer use rates, application timing, and the fractions of ammonium N (NH4+-N) and nitrate N (NO3−-N) used across the contiguous US at a resolution of 5 km × 5 km during the period from 1850 to 2015. We found that N use rates in the US increased from 0.22 g N m−2 yr−1 in 1940 to 9.04 g N m−2 yr−1 in 2015. Geospatial analysis revealed that hotspots for N fertilizer use have shifted from the southeastern and eastern US to the Midwest, the Great Plains, and the Northwest over the past century. Specifically, corn in the Corn Belt region received the most intensive N input in spring, followed by the application of a large amount of N in fall, implying a high N loss risk in this region. Moreover, spatial-temporal fraction of NH4+-N and NO3−-N varied largely among regions. Generally, farmers have increasingly favored ammonia N fertilizers over nitrate N fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess N addition impacts, and improve N management to alleviate environmental problems. Datasets used in this study are available at https://doi.org/10.1594/PANGAEA.883585.
Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-969-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Earth System Science... arrow_drop_down Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-969-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, Australia, United States, France, United StatesPublisher:Springer Science and Business Media LLC Zhen Yu; Philippe Ciais; Shilong Piao; Richard A. Houghton; Chaoqun Lü; Hanqin Tian; Evgenios Agathokleous; Giri Kattel; Stephen Sitch; Daniel Goll; Xu Yue; Anthony P. Walker; Pierre Friedlingstein; Atul K. Jain; Shirong Liu; Guoyi Zhou;AbstractCarbon budget accounting relies heavily on Food and Agriculture Organization land-use data reported by governments. Here we develop a new land-use and cover-change database for China, finding that differing historical survey methods biased China’s reported data causing large errors in Food and Agriculture Organization databases. Land ecosystem model simulations driven with the new data reveal a strong carbon sink of 8.9 ± 0.8 Pg carbon from 1980 to 2019 in China, which was not captured in Food and Agriculture Organization data-based estimations due to biased land-use and cover-change signals. The land-use and cover-change in China, characterized by a rapid forest expansion from 1980 to 2019, contributed to nearly 44% of the national terrestrial carbon sink. In contrast, climate changes (22.3%), increasing nitrogen deposition (12.9%), and rising carbon dioxide (8.1%) are less important contributors. This indicates that previous studies have greatly underestimated the impact of land-use and cover-change on the terrestrial carbon balance of China. This study underlines the importance of reliable land-use and cover-change databases in global carbon budget accounting.
Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36100606Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository @... arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36100606Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320284Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03787962Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32961-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu