- home
- Advanced Search
- Energy Research
- 16. Peace & justice
- Energy Research
- 16. Peace & justice
description Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Proceedings of the National Academy of Sciences Calvo, Eva María; Pelejero, Carles; Pena, Leopoldo; Cacho, Isabel; Logan, Graham A.;Understanding oceanic processes, both physical and biological, that control atmospheric CO 2 is vital for predicting their influence during the past and into the future. The Eastern Equatorial Pacific (EEP) is thought to have exerted a strong control over glacial/interglacial CO 2 variations through its link to circulation and nutrient-related changes in the Southern Ocean, the primary region of the world oceans where CO 2 -enriched deep water is upwelled to the surface ocean and comes into contact with the atmosphere. Here we present a multiproxy record of surface ocean productivity, dust inputs, and thermocline conditions for the EEP over the last 40,000 y. This allows us to detect changes in phytoplankton productivity and composition associated with increases in equatorial upwelling intensity and influence of Si-rich waters of sub-Antarctic origin. Our evidence indicates that diatoms outcompeted coccolithophores at times when the influence of Si-rich Southern Ocean intermediate waters was greatest. This shift from calcareous to noncalcareous phytoplankton would cause a lowering in atmospheric CO 2 through a reduced carbonate pump, as hypothesized by the Silicic Acid Leakage Hypothesis. However, this change does not seem to have been crucial in controlling atmospheric CO 2 , as it took place during the deglaciation, when atmospheric CO 2 concentrations had already started to rise. Instead, the concomitant intensification of Antarctic upwelling brought large quantities of deep CO 2 -rich waters to the ocean surface. This process very likely dominated any biologically mediated CO 2 sequestration and probably accounts for most of the deglacial rise in atmospheric CO 2 .
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 187 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Proceedings of the National Academy of Sciences Calvo, Eva María; Pelejero, Carles; Pena, Leopoldo; Cacho, Isabel; Logan, Graham A.;Understanding oceanic processes, both physical and biological, that control atmospheric CO 2 is vital for predicting their influence during the past and into the future. The Eastern Equatorial Pacific (EEP) is thought to have exerted a strong control over glacial/interglacial CO 2 variations through its link to circulation and nutrient-related changes in the Southern Ocean, the primary region of the world oceans where CO 2 -enriched deep water is upwelled to the surface ocean and comes into contact with the atmosphere. Here we present a multiproxy record of surface ocean productivity, dust inputs, and thermocline conditions for the EEP over the last 40,000 y. This allows us to detect changes in phytoplankton productivity and composition associated with increases in equatorial upwelling intensity and influence of Si-rich waters of sub-Antarctic origin. Our evidence indicates that diatoms outcompeted coccolithophores at times when the influence of Si-rich Southern Ocean intermediate waters was greatest. This shift from calcareous to noncalcareous phytoplankton would cause a lowering in atmospheric CO 2 through a reduced carbonate pump, as hypothesized by the Silicic Acid Leakage Hypothesis. However, this change does not seem to have been crucial in controlling atmospheric CO 2 , as it took place during the deglaciation, when atmospheric CO 2 concentrations had already started to rise. Instead, the concomitant intensification of Antarctic upwelling brought large quantities of deep CO 2 -rich waters to the ocean surface. This process very likely dominated any biologically mediated CO 2 sequestration and probably accounts for most of the deglacial rise in atmospheric CO 2 .
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 187 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Proceedings of the National Academy of Sciences Calvo, Eva María; Pelejero, Carles; Pena, Leopoldo; Cacho, Isabel; Logan, Graham A.;Understanding oceanic processes, both physical and biological, that control atmospheric CO 2 is vital for predicting their influence during the past and into the future. The Eastern Equatorial Pacific (EEP) is thought to have exerted a strong control over glacial/interglacial CO 2 variations through its link to circulation and nutrient-related changes in the Southern Ocean, the primary region of the world oceans where CO 2 -enriched deep water is upwelled to the surface ocean and comes into contact with the atmosphere. Here we present a multiproxy record of surface ocean productivity, dust inputs, and thermocline conditions for the EEP over the last 40,000 y. This allows us to detect changes in phytoplankton productivity and composition associated with increases in equatorial upwelling intensity and influence of Si-rich waters of sub-Antarctic origin. Our evidence indicates that diatoms outcompeted coccolithophores at times when the influence of Si-rich Southern Ocean intermediate waters was greatest. This shift from calcareous to noncalcareous phytoplankton would cause a lowering in atmospheric CO 2 through a reduced carbonate pump, as hypothesized by the Silicic Acid Leakage Hypothesis. However, this change does not seem to have been crucial in controlling atmospheric CO 2 , as it took place during the deglaciation, when atmospheric CO 2 concentrations had already started to rise. Instead, the concomitant intensification of Antarctic upwelling brought large quantities of deep CO 2 -rich waters to the ocean surface. This process very likely dominated any biologically mediated CO 2 sequestration and probably accounts for most of the deglacial rise in atmospheric CO 2 .
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 187 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Proceedings of the National Academy of Sciences Calvo, Eva María; Pelejero, Carles; Pena, Leopoldo; Cacho, Isabel; Logan, Graham A.;Understanding oceanic processes, both physical and biological, that control atmospheric CO 2 is vital for predicting their influence during the past and into the future. The Eastern Equatorial Pacific (EEP) is thought to have exerted a strong control over glacial/interglacial CO 2 variations through its link to circulation and nutrient-related changes in the Southern Ocean, the primary region of the world oceans where CO 2 -enriched deep water is upwelled to the surface ocean and comes into contact with the atmosphere. Here we present a multiproxy record of surface ocean productivity, dust inputs, and thermocline conditions for the EEP over the last 40,000 y. This allows us to detect changes in phytoplankton productivity and composition associated with increases in equatorial upwelling intensity and influence of Si-rich waters of sub-Antarctic origin. Our evidence indicates that diatoms outcompeted coccolithophores at times when the influence of Si-rich Southern Ocean intermediate waters was greatest. This shift from calcareous to noncalcareous phytoplankton would cause a lowering in atmospheric CO 2 through a reduced carbonate pump, as hypothesized by the Silicic Acid Leakage Hypothesis. However, this change does not seem to have been crucial in controlling atmospheric CO 2 , as it took place during the deglaciation, when atmospheric CO 2 concentrations had already started to rise. Instead, the concomitant intensification of Antarctic upwelling brought large quantities of deep CO 2 -rich waters to the ocean surface. This process very likely dominated any biologically mediated CO 2 sequestration and probably accounts for most of the deglacial rise in atmospheric CO 2 .
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 187 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1009761108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu