- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of), United States, China (People's Republic of), China (People's Republic of)Publisher:Wiley Authors:
Cheuk Wang Fung; Kin Yung Chau; Daniel Chun Sang Tong; Claire Knox; +9 AuthorsCheuk Wang Fung
Cheuk Wang Fung in OpenAIRE
Cheuk Wang Fung; Kin Yung Chau; Daniel Chun Sang Tong; Claire Knox;Cheuk Wang Fung
Cheuk Wang Fung in OpenAIRE
Sindy Sing Ting Tam; Sin Yen Tan;Sindy Sing Ting Tam
Sindy Sing Ting Tam in OpenAIRE
Danson Shek Chun Loi; Ziuwin Leung; Ying Xu;Danson Shek Chun Loi
Danson Shek Chun Loi in OpenAIRE
Yi Lan;
Pei‐Yuan Qian; Pei‐Yuan Qian
Pei‐Yuan Qian in OpenAIRE
Kit Yu Karen Chan; Kit Yu Karen Chan
Kit Yu Karen Chan in OpenAIRE
Angela Ruohao Wu; Angela Ruohao Wu
Angela Ruohao Wu in OpenAIREdoi: 10.1111/mec.17148
pmid: 37888909
AbstractThe dissolution of anthropogenic carbon dioxide (CO2) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA‐sequencing (RNA‐seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single‐embryo RNA‐seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half‐sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single‐embryo RNA‐seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Swarthmore College: ... arrow_drop_down Swarthmore College: WorksArticle . 2023License: CC BY NCFull-Text: https://works.swarthmore.edu/fac-biology/664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.17148&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Swarthmore College: ... arrow_drop_down Swarthmore College: WorksArticle . 2023License: CC BY NCFull-Text: https://works.swarthmore.edu/fac-biology/664Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.17148&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Oxford University Press (OUP) doi: 10.1093/icb/icae071
pmid: 38871950
Synopsis Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.
Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae071&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Integrative and Comp... arrow_drop_down Integrative and Comparative BiologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icae071&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Frontiers Media SA Funded by:NSF | Exploring mechanisms of p..., NSF | LTER: Environmental drive...NSF| Exploring mechanisms of plasticity and tolerance in early stage marine invertebrates in response to marine heatwaves ,NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Authors:
Kit Yu Karen Chan; Kit Yu Karen Chan; Li Kui; Adriane M. McDonald; +5 AuthorsKit Yu Karen Chan
Kit Yu Karen Chan in OpenAIRE
Kit Yu Karen Chan; Kit Yu Karen Chan; Li Kui; Adriane M. McDonald; Adriane M. McDonald; Amelia L. Ritger; Amelia L. Ritger; Gretchen E. Hofmann; Gretchen E. Hofmann;Kit Yu Karen Chan
Kit Yu Karen Chan in OpenAIREMarine heatwaves (MHWs) are of increasing concern due to the emerging ecological and socioeconomic impacts on coastal ecosystems. Leveraging the data of the Santa Barbara Coastal Long-Term Ecological Research project, we analyzed the MHW event metrics observed in the kelp forest ecosystem and across Santa Barbara Channel, CA, USA. Not only was there a significant positive trend in the number of MHWs recorded, their duration and intensity were also increasing over time. MHWs were detected year-round, suggesting that marine organisms have exposure risks regardless of their phenology. Exposure at one life history stage could have a legacy effect on the subsequent stages, implying little temporal refuge. In contrast, the coastal mooring data revealed that near-surface and bottom events were not necessarily coupled even at less than 15 m. Such spatial variation in MHWs might provide a temporary refuge for mobile species. These observations also highlight the importance of depth-stratified, long-term coastal monitoring to understand spatio-temporal variation in MHW stress on coastal communities.
Frontiers in Marine ... arrow_drop_down Swarthmore College: WorksArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1476542&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Swarthmore College: WorksArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1476542&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
