- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 DenmarkPublisher:American Association for the Advancement of Science (AAAS) E. Dinerstein; C. Vynne; E. Sala; A. R. Joshi; S. Fernando; T. E. Lovejoy; J. Mayorga; D. Olson; G. P. Asner; J. E. M. Baillie; N. D. Burgess; K. Burkart; R. F. Noss; Y. P. Zhang; A. Baccini; T. Birch; N. Hahn; L. N. Joppa; E. Wikramanayake;pmid: 31016243
pmc: PMC6474764
The Global Deal for Nature sets an ambitious agenda to protect our biosphere through ecosystem conservation and land restoration.
Science Advances arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw2869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 571 citations 571 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Science Advances arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw2869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:FapUNIFESP (SciELO) Wayne S. Walker; Alessandro Baccini; Alessandro Baccini; Mary Farina; Eunice Maia de Andrade; Andrea D A Castanho; Andrea D A Castanho; Michael T. Coe; Diego Antunes Campos;pmid: 32321025
This work is focused on characterizing and understanding the aboveground biomass of Caatinga in a semiarid region in northeastern Brazil. The quantification of Caatinga biomass is limited by the small number of field plots, which are inadequate for addressing the biome's extreme heterogeneity. Satellite-derived biomass products can address spatial and temporal changes but they have not been validated for seasonally dry tropical forests. Here we combine a compilation of published field phytosociological observations with a new 30m spatial resolution satellite biomass product. Both data were significantly correlated, satellite estimates consistently captured the wide variability of the biomass across the different physiognomies (2-272 Mg/ha). Based on the satellite product we show that in year 2000 about 50 percent of the region had very low biomass (<2 Mg/ha) and that the majority of the biomass (86%) is concentrated in only 27% of the area. Our work confirm other estimates of biomass 39 Mg/ha (9-61 Mg/ha) and carbon 0.79 PgC. The satellite products together with ground based estimates has the potential to improve forest management in Caatinga and other seasonally dry tropical forests through improved approximation of spatial variability, how they relate to climate, and support numerical modeling experiments in semiarid regions.
Anais da Academia Br... arrow_drop_down Anais da Academia Brasileira de CiênciasArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0001-3765202020190282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Anais da Academia Br... arrow_drop_down Anais da Academia Brasileira de CiênciasArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0001-3765202020190282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Association for the Advancement of Science (AAAS) A. Baccini; W. Walker; L. Carvalho; M. Farina; R. A. Houghton;pmid: 30630897
The Hansen et al . critique centers on the lack of spatial agreement between two very different datasets. Nonetheless, properly constructed comparisons designed to reconcile the two datasets yield up to 90% agreement (e.g., in South America).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aat1205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aat1205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 DenmarkPublisher:American Association for the Advancement of Science (AAAS) E. Dinerstein; C. Vynne; E. Sala; A. R. Joshi; S. Fernando; T. E. Lovejoy; J. Mayorga; D. Olson; G. P. Asner; J. E. M. Baillie; N. D. Burgess; K. Burkart; R. F. Noss; Y. P. Zhang; A. Baccini; T. Birch; N. Hahn; L. N. Joppa; E. Wikramanayake;pmid: 31016243
pmc: PMC6474764
The Global Deal for Nature sets an ambitious agenda to protect our biosphere through ecosystem conservation and land restoration.
Science Advances arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw2869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 571 citations 571 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Science Advances arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaw2869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:FapUNIFESP (SciELO) Wayne S. Walker; Alessandro Baccini; Alessandro Baccini; Mary Farina; Eunice Maia de Andrade; Andrea D A Castanho; Andrea D A Castanho; Michael T. Coe; Diego Antunes Campos;pmid: 32321025
This work is focused on characterizing and understanding the aboveground biomass of Caatinga in a semiarid region in northeastern Brazil. The quantification of Caatinga biomass is limited by the small number of field plots, which are inadequate for addressing the biome's extreme heterogeneity. Satellite-derived biomass products can address spatial and temporal changes but they have not been validated for seasonally dry tropical forests. Here we combine a compilation of published field phytosociological observations with a new 30m spatial resolution satellite biomass product. Both data were significantly correlated, satellite estimates consistently captured the wide variability of the biomass across the different physiognomies (2-272 Mg/ha). Based on the satellite product we show that in year 2000 about 50 percent of the region had very low biomass (<2 Mg/ha) and that the majority of the biomass (86%) is concentrated in only 27% of the area. Our work confirm other estimates of biomass 39 Mg/ha (9-61 Mg/ha) and carbon 0.79 PgC. The satellite products together with ground based estimates has the potential to improve forest management in Caatinga and other seasonally dry tropical forests through improved approximation of spatial variability, how they relate to climate, and support numerical modeling experiments in semiarid regions.
Anais da Academia Br... arrow_drop_down Anais da Academia Brasileira de CiênciasArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0001-3765202020190282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Anais da Academia Br... arrow_drop_down Anais da Academia Brasileira de CiênciasArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0001-3765202020190282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Association for the Advancement of Science (AAAS) A. Baccini; W. Walker; L. Carvalho; M. Farina; R. A. Houghton;pmid: 30630897
The Hansen et al . critique centers on the lack of spatial agreement between two very different datasets. Nonetheless, properly constructed comparisons designed to reconcile the two datasets yield up to 90% agreement (e.g., in South America).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aat1205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aat1205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu