- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 25 Jun 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Developing climat...NSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in ArkansasNijanthini Sriskandarajah; Chloé Wüst-Galley; Sandra Heller; Jens Leifeld; Tiia Määttä; Zutao Ouyang; Benjamin R. K. Runkle; Marcus Schiedung; Michael W. I. Schmidt; Shersingh Joseph Tumber-Dávila; Avni Malhotra;AbstractCarbon-rich peat soils have been drained and used extensively for agriculture throughout human history, leading to significant losses of their soil carbon. One solution for rewetting degraded peat is wet crop cultivation. Crops such as rice, which can grow in water-saturated conditions, could enable agricultural production to be maintained whilst reducing CO2 and N2O emissions from peat. However, wet rice cultivation can release considerable methane (CH4). Water table and soil management strategies may enhance rice yield and minimize CH4 emissions, but they also influence plant biomass allocation strategies. It remains unclear how water and soil management influences rice allocation strategies and how changing plant allocation and associated traits, particularly belowground, influence CH4-related processes. We examined belowground biomass (BGB), aboveground biomass (AGB), belowground:aboveground ratio (BGB:ABG), and a range of root traits (root length, root diameter, root volume, root area, and specific root length) under different soil and water treatments; and evaluated plant trait linkages to CH4. Rice (Oryza sativa L.) was grown for six months in field mesocosms under high (saturated) or low water table treatments, and in either degraded peat soil or degraded peat covered with mineral soil. We found that BGB and BGB:AGB were lowest in water saturated conditions where mineral soil had been added to the peat, and highest in low-water table peat soils. Furthermore, CH4 and BGB were positively related, with BGB explaining 60% of the variation in CH4 but only under low water table conditions. Our results suggest that a mix of low water table and mineral soil addition could minimize belowground plant allocation in rice, which could further lower CH4 likely because root-derived carbon is a key substrate for methanogenesis. Minimizing root allocation, in conjunction with water and soil management, could be explored as a strategy for lowering CH4 emissions from wet rice cultivation in degraded peatlands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-64616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-64616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Zutao Ouyang; Robert B. Jackson; Gavin McNicol; Etienne Fluet‐Chouinard; Benjamin R. K. Runkle; Dario Papale; Sara Knox; S. W. Cooley; Kyle Delwiche; Sarah Féron; Jeremy Irvin; Avni Malhotra; Muhammad Muddasir; Simone Sabbatini; Ma. Carmelita Alberto; Alessandro Cescatti; Chi–Ling Chen; Dong Jiang; B. Fong; Haiqiang Guo; Hao Lu; Hiroyasu Iwata; Qingyu Jia; Weimin Ju; Minseok Kang; Hong Li; Joon Kim; Michele L. Reba; Amaresh Kumar Nayak; Débora Regina Roberti; Youngryel Ryu; Chinmaya Kumar Swain; Benjei Tsuang; Xiangming Xiao; Wenping Yuan; Geli Zhang; Yongguang Zhang;handle: 2067/48557
Aunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United StatesPublisher:Wiley Lucas E. Nave; Corey R. Lawrence; Ben Bond-Lamberty; Jennifer W. Harden; Jennifer W. Harden; Rebecca Ryals; Whendee L. Silver; Susan E. Crow; Avni Malhotra; Katherine Todd-Brown; Marco Keiluweit; Gustaf Hugelius; Gustaf Hugelius; Anders Ahlström; Anders Ahlström; M. Francesca Cotrufo; Sintana E. Vergara; Joseph C. Blankinship; Marcia S. DeLonge; Robert B. Jackson; Claire L. Phillips; Stephen M. Ogle; Katherine Heckman; Rodrigo Vargas; Julie Loisel;AbstractSoil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil‐management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 25 Jun 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Developing climat...NSF| CAREER: Developing climate-smart irrigation strategies for rice agriculture in ArkansasNijanthini Sriskandarajah; Chloé Wüst-Galley; Sandra Heller; Jens Leifeld; Tiia Määttä; Zutao Ouyang; Benjamin R. K. Runkle; Marcus Schiedung; Michael W. I. Schmidt; Shersingh Joseph Tumber-Dávila; Avni Malhotra;AbstractCarbon-rich peat soils have been drained and used extensively for agriculture throughout human history, leading to significant losses of their soil carbon. One solution for rewetting degraded peat is wet crop cultivation. Crops such as rice, which can grow in water-saturated conditions, could enable agricultural production to be maintained whilst reducing CO2 and N2O emissions from peat. However, wet rice cultivation can release considerable methane (CH4). Water table and soil management strategies may enhance rice yield and minimize CH4 emissions, but they also influence plant biomass allocation strategies. It remains unclear how water and soil management influences rice allocation strategies and how changing plant allocation and associated traits, particularly belowground, influence CH4-related processes. We examined belowground biomass (BGB), aboveground biomass (AGB), belowground:aboveground ratio (BGB:ABG), and a range of root traits (root length, root diameter, root volume, root area, and specific root length) under different soil and water treatments; and evaluated plant trait linkages to CH4. Rice (Oryza sativa L.) was grown for six months in field mesocosms under high (saturated) or low water table treatments, and in either degraded peat soil or degraded peat covered with mineral soil. We found that BGB and BGB:AGB were lowest in water saturated conditions where mineral soil had been added to the peat, and highest in low-water table peat soils. Furthermore, CH4 and BGB were positively related, with BGB explaining 60% of the variation in CH4 but only under low water table conditions. Our results suggest that a mix of low water table and mineral soil addition could minimize belowground plant allocation in rice, which could further lower CH4 likely because root-derived carbon is a key substrate for methanogenesis. Minimizing root allocation, in conjunction with water and soil management, could be explored as a strategy for lowering CH4 emissions from wet rice cultivation in degraded peatlands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-64616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-64616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Zutao Ouyang; Robert B. Jackson; Gavin McNicol; Etienne Fluet‐Chouinard; Benjamin R. K. Runkle; Dario Papale; Sara Knox; S. W. Cooley; Kyle Delwiche; Sarah Féron; Jeremy Irvin; Avni Malhotra; Muhammad Muddasir; Simone Sabbatini; Ma. Carmelita Alberto; Alessandro Cescatti; Chi–Ling Chen; Dong Jiang; B. Fong; Haiqiang Guo; Hao Lu; Hiroyasu Iwata; Qingyu Jia; Weimin Ju; Minseok Kang; Hong Li; Joon Kim; Michele L. Reba; Amaresh Kumar Nayak; Débora Regina Roberti; Youngryel Ryu; Chinmaya Kumar Swain; Benjei Tsuang; Xiangming Xiao; Wenping Yuan; Geli Zhang; Yongguang Zhang;handle: 2067/48557
Aunque el cultivo de arroz es una de las fuentes agrícolas más importantes de metano (CH4) y contribuye con ~8% del total de las emisiones antropogénicas globales, persisten grandes discrepancias entre las estimaciones de las emisiones globales de CH4 del cultivo de arroz (que van de 18 a 115 Tg CH4 año−1) debido a la falta de limitaciones observables. La distribución espacial de las emisiones de arrozales se ha evaluado a escalas regionales a globales mediante inventarios ascendentes y modelos de superficie terrestre sobre resolución espacial gruesa (por ejemplo, > 0,5°) o unidades espaciales (por ejemplo, zonas agroecológicas). Sin embargo, las estimaciones de flujo de CH4 de alta resolución capaces de capturar los efectos del clima local y las prácticas de gestión sobre las emisiones, así como la replicación de datos in situ, siguen siendo difíciles de producir debido a la escasez de mapas de arroz de alta resolución y a la insuficiente comprensión de los predictores de CH4. Aquí, combinamos datos de flujo de metano de arroz con arroz de 23 sitios de covarianza de remolinos globales y datos de teledetección MODIS con aprendizaje automático para 1) evaluar el rendimiento del modelo basado en datos y la importancia variable para predecir los flujos de CH4 de arroz; y 2) producir estimaciones cuadriculadas de aumento de escala de las emisiones de CH4 de arroz a una resolución de 5000 m en toda Asia monzónica, donde se cultiva ~87% del área mundial de arroz y se produce ~ 90% de la producción mundial de arroz. Nuestro modelo de bosque aleatorio logró valores de eficiencia de Nash-Sutcliffe de 0,59 y 0,69 para flujos de CH4 de 8 días y flujos de CH4 medios del sitio, respectivamente, con índices relacionados con la temperatura de la superficie terrestre, la biomasa y la disponibilidad de agua como los predictores más importantes. Estimamos que las emisiones anuales promedio de arroz con cáscara CH4 (excluida la temporada de barbecho invernal) en toda Asia monzónica son de 20.6 ± 1.1 Tg año−1 para 2001–2015, que se encuentra en el rango más bajo de las estimaciones anteriores basadas en el inventario (20–32 CH4 Tg año−1). Nuestras estimaciones también sugieren que las emisiones de CH4 del arroz con cáscara en esta región han estado disminuyendo desde 2007 hasta 2015 después de las disminuciones tanto en el área de cultivo de arroz con cáscara como en las tasas de emisión por unidad de área, lo que sugiere que las emisiones de CH4 del arroz con cáscara en el monzón de Asia probablemente no hayan contribuido al renovado crecimiento del CH4 atmosférico en los últimos años. Bien que la riziculture soit l'une des plus importantes sources agricoles de méthane (CH4) et contribue à environ8% des émissions anthropiques mondiales totales, de grands écarts subsistent entre les estimations des émissions mondiales de CH4 provenant de la riziculture (allant de 18 à 115 Tg de CH4 par an) en raison d'un manque de contraintes d'observation. La distribution spatiale des émissions de riz paddy a été évaluée à l'échelle régionale et mondiale par des inventaires ascendants et des modèles de surface terrestre sur une résolution spatiale grossière (par exemple, > 0,5°) ou des unités spatiales (par exemple, des zones agro-écologiques). Cependant, les estimations de flux de CH4 à haute résolution capables de capturer les effets du climat local et des pratiques de gestion sur les émissions, ainsi que de reproduire les données in situ, restent difficiles à produire en raison de la rareté des cartes à haute résolution du riz paddy et d'une compréhension insuffisante des prédicteurs de CH4. Ici, nous combinons les données de flux de méthane de riz paddy provenant de 23 sites mondiaux de covariance des tourbillons et les données de télédétection MODIS avec l'apprentissage automatique pour 1) évaluer les performances du modèle basé sur les données et l'importance variable pour prédire les flux de CH4 du riz ; et 2) produire des estimations maillées des émissions de CH4 du riz à une résolution de 5000 m dans toute l'Asie de la mousson, où ∼87 % de la superficie mondiale du riz est cultivée et ∼ 90 % de la production mondiale de riz se produit. Notre modèle de forêt aléatoire a atteint des valeurs d'efficacité de Nash-Sutcliffe de 0,59 et 0,69 pour les flux de CH4 sur 8 jours et les flux de CH4 moyens du site, respectivement, la température de surface du sol, la biomasse et les indices liés à la disponibilité de l'eau étant les prédicteurs les plus importants. Nous estimons que les émissions annuelles moyennes de CH4 de riz paddy (hors saison de jachère hivernale) dans toute l'Asie de la mousson sont de 20,6 ± 1,1 Tgan-1 pour 2001–2015, ce qui se situe dans la fourchette inférieure des estimations antérieures basées sur les inventaires (20–32 Tgan-1 de CH4). Nos estimations suggèrent également que les émissions de CH4 du riz paddy dans cette région ont diminué de 2007 à 2015 à la suite de baisses à la fois de la superficie cultivée en riz paddy et des taux d'émission par unité de surface, ce qui suggère que les émissions de CH4 du riz paddy dans Monsoon Asia n'ont probablement pas contribué à la croissance renouvelée du CH4 atmosphérique ces dernières années. Although rice cultivation is one of the most important agricultural sources of methane (CH4) and contributes ∼8% of total global anthropogenic emissions, large discrepancies remain among estimates of global CH4 emissions from rice cultivation (ranging from 18 to 115 Tg CH4 yr−1) due to a lack of observational constraints. The spatial distribution of paddy-rice emissions has been assessed at regional-to-global scales by bottom-up inventories and land surface models over coarse spatial resolution (e.g., > 0.5°) or spatial units (e.g., agro-ecological zones). However, high-resolution CH4 flux estimates capable of capturing the effects of local climate and management practices on emissions, as well as replicating in situ data, remain challenging to produce because of the scarcity of high-resolution maps of paddy-rice and insufficient understanding of CH4 predictors. Here, we combine paddy-rice methane-flux data from 23 global eddy covariance sites and MODIS remote sensing data with machine learning to 1) evaluate data-driven model performance and variable importance for predicting rice CH4 fluxes; and 2) produce gridded up-scaling estimates of rice CH4 emissions at 5000-m resolution across Monsoon Asia, where ∼87% of global rice area is cultivated and ∼ 90% of global rice production occurs. Our random-forest model achieved Nash-Sutcliffe Efficiency values of 0.59 and 0.69 for 8-day CH4 fluxes and site mean CH4 fluxes respectively, with land surface temperature, biomass and water-availability-related indices as the most important predictors. We estimate the average annual (winter fallow season excluded) paddy rice CH4 emissions throughout Monsoon Asia to be 20.6 ± 1.1 Tg yr−1 for 2001–2015, which is at the lower range of previous inventory-based estimates (20–32 CH4 Tg yr−1). Our estimates also suggest that CH4 emissions from paddy rice in this region have been declining from 2007 through 2015 following declines in both paddy-rice growing area and emission rates per unit area, suggesting that CH4 emissions from paddy rice in Monsoon Asia have likely not contributed to the renewed growth of atmospheric CH4 in recent years. على الرغم من أن زراعة الأرز هي واحدة من أهم المصادر الزراعية للميثان (CH4) وتساهم بنسبة 8 ٪ من إجمالي الانبعاثات العالمية البشرية المنشأ، إلا أنه لا تزال هناك اختلافات كبيرة بين تقديرات انبعاثات الميثان العالمية من زراعة الأرز (التي تتراوح من 18 إلى 115 تيراغرام من الميثان في السنة−1) بسبب نقص قيود المراقبة. تم تقييم التوزيع المكاني لانبعاثات الأرز والأرز على المستويات الإقليمية إلى العالمية من خلال قوائم الجرد التصاعدية ونماذج سطح الأرض على الدقة المكانية الخشنة (على سبيل المثال، > 0.5درجة) أو الوحدات المكانية (على سبيل المثال، المناطق الزراعية الإيكولوجية). ومع ذلك، لا تزال تقديرات تدفق الميثان عالية الدقة القادرة على التقاط آثار المناخ المحلي وممارسات الإدارة على الانبعاثات، وكذلك تكرار البيانات في الموقع، صعبة الإنتاج بسبب ندرة الخرائط عالية الدقة لأرز الأرز وعدم كفاية فهم تنبؤات الميثان. هنا، نجمع بين بيانات تدفق الميثان من الأرز والأرز من 23 موقعًا عالميًا للتباين الدوامي وبيانات الاستشعار عن بعد MODIS مع التعلم الآلي من أجل 1) تقييم أداء النموذج القائم على البيانات والأهمية المتغيرة للتنبؤ بتدفقات CH4 للأرز ؛ و 2) إنتاج تقديرات شبكية لانبعاثات CH4 للأرز بدقة 5000 متر في جميع أنحاء آسيا الموسمية، حيث تتم زراعة 87 ٪ من مساحة الأرز العالمية و 90 ٪ من إنتاج الأرز العالمي. حقق نموذجنا للغابات العشوائية قيم كفاءة ناش- سوتكليف البالغة 0.59 و 0.69 لتدفقات الميثان لمدة 8 أيام ومتوسط تدفقات الميثان في الموقع على التوالي، مع مؤشرات درجة حرارة سطح الأرض والكتلة الحيوية وتوافر المياه كأهم المؤشرات. نقدر المتوسط السنوي (باستثناء موسم الإراحة الشتوية) لانبعاثات الميثان من الأرز في جميع أنحاء آسيا الموسمية بـ 20.6 ± 1.1 تيراغرام في السنة-1 للفترة 2001–2015، وهو في النطاق الأدنى للتقديرات السابقة القائمة على المخزون (20–32 تيراغرام في السنة-1). تشير تقديراتنا أيضًا إلى أن انبعاثات الميثان من أرز الأرز في هذه المنطقة قد انخفضت من عام 2007 حتى عام 2015 بعد الانخفاضات في كل من مساحة زراعة أرز الأرز ومعدلات الانبعاثات لكل وحدة مساحة، مما يشير إلى أن انبعاثات الميثان من أرز الأرز في الرياح الموسمية في آسيا من المحتمل ألا تساهم في النمو المتجدد للميثان في الغلاف الجوي في السنوات الأخيرة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United StatesPublisher:Wiley Lucas E. Nave; Corey R. Lawrence; Ben Bond-Lamberty; Jennifer W. Harden; Jennifer W. Harden; Rebecca Ryals; Whendee L. Silver; Susan E. Crow; Avni Malhotra; Katherine Todd-Brown; Marco Keiluweit; Gustaf Hugelius; Gustaf Hugelius; Anders Ahlström; Anders Ahlström; M. Francesca Cotrufo; Sintana E. Vergara; Joseph C. Blankinship; Marcia S. DeLonge; Robert B. Jackson; Claire L. Phillips; Stephen M. Ogle; Katherine Heckman; Rodrigo Vargas; Julie Loisel;AbstractSoil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil‐management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu