- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:AKA | Mechanisms underlying lar..., EC | PAGE21AKA| Mechanisms underlying large N2O emissions from cryoturbated peat soil in tundra ,EC| PAGE21Authors: Torben R. Christensen; Torben R. Christensen; Marcin Jackowicz-Korczynski; Richard E. Lamprecht; +10 AuthorsTorben R. Christensen; Torben R. Christensen; Marcin Jackowicz-Korczynski; Richard E. Lamprecht; Christina Biasi; Teemu Tahvanainen; Mikhail Mastepanov; Mikhail Mastepanov; Maija E. Marushchak; Pertti J. Martikainen; Lars Granlund; Amelie Lindgren; Amelie Lindgren; Carolina Voigt;Significance The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years ago, could now become available for decomposition, leading to the release of nitrous oxide (N 2 O) to the atmosphere. N 2 O is a strong greenhouse gas, almost 300 times more powerful than CO 2 for warming the climate. Although carbon dynamics in the Arctic are well studied, the fact that Arctic soils store enormous amounts of nitrogen has received little attention so far. We report that the Arctic may become a substantial source of N 2 O when the permafrost thaws, and that N 2 O emissions could occur from surfaces covering almost one-fourth of the entire Arctic.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1073/pnas.1702902114Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1702902114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1073/pnas.1702902114Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1702902114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 21 May 2024 Spain, Spain, Spain, Germany, France, ItalyPublisher:Wiley Borja Jiménez‐Alfaro; Liene Aunina; Michele Carbognani; Daniel Dítě; Eduardo Fernández‐Pascual; Emmanuel Garbolino; Ondřej Hájek; Petra Hájková; Tatiana G. Ivchenko; Ute Jandt; Florian Jansen; Tiina H. M. Kolari; Paweł Pawlikowski; Aaron Pérez‐Haase; Tomáš Peterka; Alessandro Petraglia; Zuzana Plesková; Teemu Tahvanainen; Marcello Tomaselli; Michal Hájek;doi: 10.1111/gcb.16965 , 10.25673/116125
pmid: 37818677
handle: 10261/363640 , 10651/71675 , 11381/2961592
doi: 10.1111/gcb.16965 , 10.25673/116125
pmid: 37818677
handle: 10261/363640 , 10651/71675 , 11381/2961592
AbstractUnderstanding large‐scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non‐linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.
Share_it arrow_drop_down Share_itArticle . 2023License: CC BYFull-Text: http://dx.doi.org/10.25673/116125Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2023License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoDiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 67 Powered bymore_vert Share_it arrow_drop_down Share_itArticle . 2023License: CC BYFull-Text: http://dx.doi.org/10.25673/116125Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2023License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoDiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, France, Italy, FrancePublisher:Wiley Funded by:AKA | Ecosystem shift potential...AKA| Ecosystem shift potential of northern mires in response to hydrological changeAaron Pérez-Haase; Aaron Pérez-Haase; Ute Jandt; Paweł Pawlikowski; Tatiana Ivchenko; Michele Carbognani; Petra Hájková; Petra Hájková; Michal Hájek; Borja Jiménez-Alfaro; Borja Jiménez-Alfaro; Lubomír Tichý; Tiina Kolari; Marcello Tomaselli; Tomáš Peterka; Florian Jansen; Jakub Těšitel; Zuzana Plesková; Teemu Tahvanainen; Daniel Dítě; Daniel Dítě; Emmanuel Garbolino; Liene Aunina; Eva Mikulášková;AbstractRising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European‐scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity‐constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty‐five fen species showed a statistically significant interaction between pH and temperature (adj p ˂ .01). Forty‐six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat‐dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high‐pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.
Archivio della ricer... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Full-Text: https://hdl.handle.net/11381/2933409Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de la Universitat de BarcelonaArticle . 2025Data sources: Diposit Digital de la Universitat de BarcelonaGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 21 Powered bymore_vert Archivio della ricer... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Full-Text: https://hdl.handle.net/11381/2933409Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de la Universitat de BarcelonaArticle . 2025Data sources: Diposit Digital de la Universitat de BarcelonaGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United Kingdom, Norway, United Kingdom, Australia, Netherlands, United Kingdom, Austria, Australia, Chile, United Kingdom, Australia, Spain, Australia, Austria, Australia, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:ARC | Linkage Projects - Grant ..., ARC | ARC Future Fellowships - ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP180100159 ,ARC| ARC Future Fellowships - Grant ID: FT190100234 ,ARC| Linkage Projects - Grant ID: LP170101143David A. Keith; José R. Ferrer‐Paris; Emily Nicholson; Michael M. Bishop; Beth Polidoro; Eva Ramírez-Llodra; Mark G. Tozer; Jeanne L. Nel; Ralph Mac Nally; Edward J. Gregr; Kate E. Watermeyer; Franz Essl; Don Faber‐Langendoen; Janet Franklin; Caroline E. R. Lehmann; Andrés Etter; Dirk J. Roux; Jonathan S. Stark; Jessica A. Rowland; Neil Brummitt; U. Fernández-Arcaya; Iain M. Suthers; Susan K. Wiser; Ian Donohue; Leland J. Jackson; R. Toby Pennington; Thomas M. Iliffe; Vasilis Gerovasileiou; Paul S. Giller; Belinda J. Robson; Nathalie Pettorelli; Ángela Andrade; Arild Lindgaard; Teemu Tahvanainen; Aleks Terauds; Michael A. Chadwick; Nicholas Murray; Justin Moat; Patricio Pliscoff; Irene Zager; Richard T. Kingsford;pmid: 36224387
pmc: PMC9581774
AbstractAs the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36224387Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41586-022-05318-4Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/7f5230mfData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05318-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 171 citations 171 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 47visibility views 47 download downloads 47 Powered bymore_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36224387Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41586-022-05318-4Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/7f5230mfData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05318-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:AKA | Mechanisms underlying lar..., EC | PAGE21AKA| Mechanisms underlying large N2O emissions from cryoturbated peat soil in tundra ,EC| PAGE21Authors: Torben R. Christensen; Torben R. Christensen; Marcin Jackowicz-Korczynski; Richard E. Lamprecht; +10 AuthorsTorben R. Christensen; Torben R. Christensen; Marcin Jackowicz-Korczynski; Richard E. Lamprecht; Christina Biasi; Teemu Tahvanainen; Mikhail Mastepanov; Mikhail Mastepanov; Maija E. Marushchak; Pertti J. Martikainen; Lars Granlund; Amelie Lindgren; Amelie Lindgren; Carolina Voigt;Significance The Arctic is warming rapidly, causing permafrost soils to thaw. Vast stocks of nitrogen (>67 billion tons) in the permafrost, accumulated thousands of years ago, could now become available for decomposition, leading to the release of nitrous oxide (N 2 O) to the atmosphere. N 2 O is a strong greenhouse gas, almost 300 times more powerful than CO 2 for warming the climate. Although carbon dynamics in the Arctic are well studied, the fact that Arctic soils store enormous amounts of nitrogen has received little attention so far. We report that the Arctic may become a substantial source of N 2 O when the permafrost thaws, and that N 2 O emissions could occur from surfaces covering almost one-fourth of the entire Arctic.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1073/pnas.1702902114Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1702902114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BY NC NDFull-Text: http://dx.doi.org/10.1073/pnas.1702902114Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2017 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1702902114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 21 May 2024 Spain, Spain, Spain, Germany, France, ItalyPublisher:Wiley Borja Jiménez‐Alfaro; Liene Aunina; Michele Carbognani; Daniel Dítě; Eduardo Fernández‐Pascual; Emmanuel Garbolino; Ondřej Hájek; Petra Hájková; Tatiana G. Ivchenko; Ute Jandt; Florian Jansen; Tiina H. M. Kolari; Paweł Pawlikowski; Aaron Pérez‐Haase; Tomáš Peterka; Alessandro Petraglia; Zuzana Plesková; Teemu Tahvanainen; Marcello Tomaselli; Michal Hájek;doi: 10.1111/gcb.16965 , 10.25673/116125
pmid: 37818677
handle: 10261/363640 , 10651/71675 , 11381/2961592
doi: 10.1111/gcb.16965 , 10.25673/116125
pmid: 37818677
handle: 10261/363640 , 10651/71675 , 11381/2961592
AbstractUnderstanding large‐scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non‐linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.
Share_it arrow_drop_down Share_itArticle . 2023License: CC BYFull-Text: http://dx.doi.org/10.25673/116125Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2023License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoDiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 63visibility views 63 download downloads 67 Powered bymore_vert Share_it arrow_drop_down Share_itArticle . 2023License: CC BYFull-Text: http://dx.doi.org/10.25673/116125Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2023License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoDiposit Digital de la Universitat de BarcelonaArticle . 2023License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, France, Italy, FrancePublisher:Wiley Funded by:AKA | Ecosystem shift potential...AKA| Ecosystem shift potential of northern mires in response to hydrological changeAaron Pérez-Haase; Aaron Pérez-Haase; Ute Jandt; Paweł Pawlikowski; Tatiana Ivchenko; Michele Carbognani; Petra Hájková; Petra Hájková; Michal Hájek; Borja Jiménez-Alfaro; Borja Jiménez-Alfaro; Lubomír Tichý; Tiina Kolari; Marcello Tomaselli; Tomáš Peterka; Florian Jansen; Jakub Těšitel; Zuzana Plesková; Teemu Tahvanainen; Daniel Dítě; Daniel Dítě; Emmanuel Garbolino; Liene Aunina; Eva Mikulášková;AbstractRising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European‐scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity‐constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty‐five fen species showed a statistically significant interaction between pH and temperature (adj p ˂ .01). Forty‐six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat‐dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high‐pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.
Archivio della ricer... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Full-Text: https://hdl.handle.net/11381/2933409Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de la Universitat de BarcelonaArticle . 2025Data sources: Diposit Digital de la Universitat de BarcelonaGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 21 Powered bymore_vert Archivio della ricer... arrow_drop_down Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Full-Text: https://hdl.handle.net/11381/2933409Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de la Universitat de BarcelonaArticle . 2025Data sources: Diposit Digital de la Universitat de BarcelonaGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United Kingdom, Norway, United Kingdom, Australia, Netherlands, United Kingdom, Austria, Australia, Chile, United Kingdom, Australia, Spain, Australia, Austria, Australia, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:ARC | Linkage Projects - Grant ..., ARC | ARC Future Fellowships - ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP180100159 ,ARC| ARC Future Fellowships - Grant ID: FT190100234 ,ARC| Linkage Projects - Grant ID: LP170101143David A. Keith; José R. Ferrer‐Paris; Emily Nicholson; Michael M. Bishop; Beth Polidoro; Eva Ramírez-Llodra; Mark G. Tozer; Jeanne L. Nel; Ralph Mac Nally; Edward J. Gregr; Kate E. Watermeyer; Franz Essl; Don Faber‐Langendoen; Janet Franklin; Caroline E. R. Lehmann; Andrés Etter; Dirk J. Roux; Jonathan S. Stark; Jessica A. Rowland; Neil Brummitt; U. Fernández-Arcaya; Iain M. Suthers; Susan K. Wiser; Ian Donohue; Leland J. Jackson; R. Toby Pennington; Thomas M. Iliffe; Vasilis Gerovasileiou; Paul S. Giller; Belinda J. Robson; Nathalie Pettorelli; Ángela Andrade; Arild Lindgaard; Teemu Tahvanainen; Aleks Terauds; Michael A. Chadwick; Nicholas Murray; Justin Moat; Patricio Pliscoff; Irene Zager; Richard T. Kingsford;pmid: 36224387
pmc: PMC9581774
AbstractAs the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36224387Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41586-022-05318-4Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/7f5230mfData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05318-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 171 citations 171 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 47visibility views 47 download downloads 47 Powered bymore_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2022License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36224387Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41586-022-05318-4Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/7f5230mfData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-05318-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu