- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Turkey, Norway, Turkey, Denmark, FinlandPublisher:Elsevier BV Funded by:AKA | The combined effect of cl..., RCN | BiodivERsA: Integrating c..., AKA | Conservation policy in a ... +2 projectsAKA| The combined effect of climate change and habitat protection on population changes and range shifts in birds ,RCN| BiodivERsA: Integrating citizen science data from national monitoring schemes to predict the impacts of global change scenarios on birds ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,RCN| Bird-friendly design of power lines ,AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsMichal Baláž; Marko Šćiban; Petr Musil; Samir Sayoud; Web Abdou; Danka Uzunova; Kiraz Erciyas Yavuz; Hichem Azafzaf; Vitor Encarnaçao; Antra Stipniece; Włodzimierz Meissner; Sándor Faragó; Verena Keller; Diego Pavón-Jordán; Leif Nilsson; Tom Langendoen; John J. Borg; Svein Håkon Lorentsen; Tibor Mikuska; Stuart H. M. Butchart; Stuart H. M. Butchart; Teresa Frost; Laimonas Sniauksta; Cristi Domsa; Viktor Natykanets; Mohamed Dakki; Szabolcs Nagy; Danae Portolou; Josef Ridzon; Menno Hornman; Khaled Etayeb; Luca Božič; Goran Topić; Lesley J. Lewis; Valeri Georgiev; Irakli Goratze; Marco Zenatello; Christina Ieronymidou; Vasiliy Kostiushyn; Andrej Vizi; Zuzana Musilová; Blas Molina; Andrea Santangeli; Clemence Gaudard; Leho Luigujoe; Taulant Bino; Anthony D. Fox; Johannes Wahl; Aleksi Lehikoinen; Jean-Yves Paquet; Preben Clausen; Koen Devos; Łukasz Ławicki; Norbert Teufelbauer;handle: 10138/325652 , 11250/2654991
Les oiseaux d'eau migrateurs ont besoin d'un réseau cohérent et efficacement conservé de zones humides tout au long de leur aire de répartition et de leur cycle de vie. En cas de changement climatique rapide, les réseaux d'aires protégées (AP) doivent être en mesure de s'adapter aux changements d'aire de répartition de la faune liés au climat s'ils veulent continuer à être efficaces à l'avenir. Ainsi, nous avons étudié la variation géographique de la relation entre l'anomalie locale de température et l'abondance de 61 espèces d'oiseaux d'eau pendant la saison hivernale en Europe et en Afrique du Nord entre 1990 et 2015. Nous avons également comparé les effets spatio-temporels sur l'abondance des sites désignés comme AP, Zones Importantes pour les Oiseaux et la Biodiversité (ZICO), les deux, ou aucune désignation (Non répertorié). L'abondance des oiseaux d'eau était positivement corrélée à une anomalie de température, cette tendance étant la plus forte vers le nord et l'est de l'Europe. L'abondance des oiseaux d'eau était plus élevée à l'intérieur des ZICO, qu'elles soient légalement protégées ou non. Les tendances en matière d'abondance des oiseaux d'eau ont également été systématiquement plus positives à l'intérieur des ZICO protégées et non protégées dans l'ensemble de la région d'étude, et ont été positives dans les zones humides non répertoriées du sud-ouest de l'Europe et de l'Afrique du Nord. Ces résultats suggèrent que les ZICO sont des sites importants pour l'hivernage des oiseaux aquatiques, mais aussi que les populations se déplacent vers des zones humides non protégées (dont certaines sont des ZICO). Ces ZICO peuvent donc représenter des sites candidats robustes pour étendre le réseau de zones humides légalement protégées par le changement climatique en Europe du Nord-Est. Ces résultats soulignent la nécessité d'un suivi pour comprendre comment l'efficacité des réseaux de sites évolue sous le changement climatique. Las aves acuáticas migratorias requieren una red cohesiva efectivamente conservada de áreas de humedales a lo largo de su área de distribución y ciclo de vida. Bajo el rápido cambio climático, las redes de áreas protegidas (AP) deben ser capaces de adaptarse a los cambios en el rango de distribución de la vida silvestre provocados por el clima si quieren seguir siendo efectivas en el futuro. Por lo tanto, investigamos la variación geográfica en la relación entre la anomalía de la temperatura local y la abundancia de 61 especies de aves acuáticas durante la temporada de invernada en Europa y el norte de África durante 1990–2015. También comparamos los efectos espacio-temporales sobre la abundancia de sitios designados como AP, Aves Importantes y Áreas de Biodiversidad (iba), ambas o ninguna designación (No listado). La abundancia de aves acuáticas se correlacionó positivamente con la anomalía de la temperatura, siendo este patrón más fuerte hacia el norte y el este de Europa. La abundancia de aves acuáticas era mayor dentro de las iba, estuvieran protegidas legalmente o no. Las tendencias en la abundancia de aves acuáticas también fueron consistentemente más positivas dentro de las iba protegidas y no protegidas en toda la región del estudio, y fueron positivas en los humedales no listados en el suroeste de Europa y el norte de África. Estos resultados sugieren que las iba son sitios importantes para las aves acuáticas invernantes, pero también que las poblaciones se están desplazando a humedales no protegidos (algunos de los cuales son iba). Por lo tanto, tales iba pueden representar sitios candidatos sólidos para expandir la red de humedales legalmente protegidos bajo el cambio climático en el noreste de Europa. Estos resultados subrayan la necesidad de monitoreo para comprender cómo la efectividad de las redes de sitios está cambiando bajo el cambio climático. Migratory waterbirds require an effectively conserved cohesive network of wetland areas throughout their range and life-cycle. Under rapid climate change, protected area (PA) networks need to be able to accommodate climate-driven range shifts in wildlife if they are to continue to be effective in the future. Thus, we investigated geographical variation in the relationship between local temperature anomaly and the abundance of 61 waterbird species during the wintering season across Europe and North Africa during 1990–2015. We also compared the spatio-temporal effects on abundance of sites designated as PAs, Important Bird and Biodiversity Areas (IBAs), both, or neither designation (Unlisted). Waterbird abundance was positively correlated with temperature anomaly, with this pattern being strongest towards north and east Europe. Waterbird abundance was higher inside IBAs, whether they were legally protected or not. Trends in waterbird abundance were also consistently more positive inside both protected and unprotected IBAs across the whole study region, and were positive in Unlisted wetlands in southwestern Europe and North Africa. These results suggest that IBAs are important sites for wintering waterbirds, but also that populations are shifting to unprotected wetlands (some of which are IBAs). Such IBAs may therefore represent robust candidate sites to expand the network of legally protected wetlands under climate change in north-eastern Europe. These results underscore the need for monitoring to understand how the effectiveness of site networks is changing under climate change. تتطلب الطيور المائية المهاجرة شبكة متماسكة محفوظة بشكل فعال من مناطق الأراضي الرطبة طوال مداها ودورة حياتها. في ظل التغير المناخي السريع، يجب أن تكون شبكات المناطق المحمية قادرة على استيعاب تحولات النطاق التي يحركها المناخ في الحياة البرية إذا كان لها أن تستمر في أن تكون فعالة في المستقبل. وبالتالي، قمنا بدراسة التباين الجغرافي في العلاقة بين شذوذ درجة الحرارة المحلية ووفرة 61 نوعًا من الطيور المائية خلال فصل الشتاء في جميع أنحاء أوروبا وشمال إفريقيا خلال الفترة 1990–2015. قارنا أيضًا التأثيرات المكانية والزمانية على وفرة المواقع المصنفة على أنها مناطق محمية، ومناطق مهمة للطيور والتنوع البيولوجي (IBAs)، أو كليهما، أو عدم التسمية (غير مدرجة). ارتبطت وفرة الطيور المائية بشكل إيجابي مع شذوذ درجة الحرارة، مع كون هذا النمط أقوى نحو شمال وشرق أوروبا. كانت وفرة الطيور المائية أعلى داخل IBAs، سواء كانت محمية قانونًا أم لا. كانت الاتجاهات في وفرة الطيور المائية أكثر إيجابية باستمرار داخل كل من IBAs المحمية وغير المحمية في جميع أنحاء منطقة الدراسة، وكانت إيجابية في الأراضي الرطبة غير المدرجة في جنوب غرب أوروبا وشمال أفريقيا. تشير هذه النتائج إلى أن IBAs هي مواقع مهمة للطيور المائية الشتوية، ولكن أيضًا أن السكان يتحولون إلى الأراضي الرطبة غير المحمية (بعضها IBAs). وبالتالي، قد تمثل هذه الهيئات المستقلة مواقع مرشحة قوية لتوسيع شبكة الأراضي الرطبة المحمية قانونًا في ظل تغير المناخ في شمال شرق أوروبا. وتؤكد هذه النتائج الحاجة إلى الرصد لفهم كيفية تغير فعالية شبكات المواقع في ظل تغير المناخ.
Biological Conservat... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiOndokuz Mayıs University Institutional RepositoryArticle . 2020Data sources: Ondokuz Mayıs University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2020.108549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert Biological Conservat... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiOndokuz Mayıs University Institutional RepositoryArticle . 2020Data sources: Ondokuz Mayıs University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2020.108549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Publicly fundedSigne Christensen-Dalsgaard; Aevar Petersen; Olivier Chastel; Francis Daunt; Flemming Merkel; Tim Guilford; Alexeï Ezhov; Nicolas Courbin; Amy Lee Kouwenberg; Paul D. Mathewson; Warren P. Porter; Grant Gilchrist; Kasper Lambert Johansen; William A. Montevecchi; Mark Newell; K. E. Erikstad; David Grémillet; David Grémillet; Hallvard Strøm; Michelle G. Fitzsimmons; Jóhannis Danielsen; Tony Diamond; Annette L. Fayet; Sébastien Descamps; Børge Moe; Mark L. Mallory; Vegard Sandøy Bråthen; Laura McFarlane Tranquilla; Jannie F. Linnebjerg; Svein-Håkon Lorentsen; Mark Baran; Nina Dehnhard; Geir Helge Systad; Hálfdán Helgi Helgason; Manon Clairbaux; Nicholas Per Huffeldt; Per Fauchald; T. K. Reiertsen; Tycho Anker-Nilssen; Jérôme Fort; Bergur Olsen; Benjamin Merkel; Ingar S. Bringsvor; Þorkell Lindberg Þórarinsson; Morten Frederiksen; Maria Gavrilo; Magdalene Langset; Mark Jessopp; Anders Mosbech; William W. L. Cheung; Yuri Krasnov;doi: 10.1111/gcb.15497
pmid: 33347684
AbstractWe explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine‐protected areas in a changing ocean.
NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Norway, United Kingdom, FrancePublisher:Elsevier BV Publicly fundedFunded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Mark Baran; Thorkell Lindberg Thórarinsson; Annette L. Fayet; Mark Newell; Laura McFarlane Tranquilla; Paul D. Mathewson; Mark Jessopp; H. G. Gilchrist; Manon Clairbaux; David Grémillet; David Grémillet; Kasper Lambert Johansen; Jannie F. Linnebjerg; Sébastien Descamps; Signe Christensen-Dalsgaard; Børge Moe; Tone Kristin Reiertsen; Nina Dehnhard; Aevar Petersen; Olivier Chastel; Geir Helge Systad; Hálfdán Helgi Helgason; Francis Daunt; Nicholas Per Huffeldt; Ingar S. Bringsvor; Flemming Merkel; Tim Guilford; Tycho Anker-Nilssen; Per Fauchald; Bergur Olsen; Morten Frederiksen; Maria Gavrilo; Warren P. Porter; Jérôme Fort; William A. Montevecchi; Magdalene Langset; Anders Mosbech; Svein-H. Lorentsen; Vegard Sandøy Bråthen; Yuri Krasnov; Amy-Lee Kouwenberg; Hallvard Strøm; A.V. Ezhov; Michelle G. Fitzsimmons; Jóhannis Danielsen; Tony Diamond; Heather L. Major; Benjamin Merkel; Kjell Einar Erikstad; Kjell Einar Erikstad; Mark L. Mallory;Each winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks."1-3 During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics4,5 by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction. However, most often the geographic origins of impacted seabirds and the causes of their deaths remain unclear.6 We performed the first ocean-basin scale assessment of cyclone exposure in a seabird community by coupling winter tracking data for ∼1,500 individuals of five key North Atlantic seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia, and Rissa tridactyla) and cyclone locations. We then explored the energetic consequences of different cyclonic conditions using a mechanistic bioenergetics model7 and tested the hypothesis that cyclones dramatically increase seabird energy requirements. We demonstrated that cyclones of high intensity impacted birds from all studied species and breeding colonies during winter but especially those aggregating in the Labrador Sea, the Davis Strait, the surroundings of Iceland, and the Barents Sea. Our broad-scale analyses suggested that cyclonic conditions do not increase seabird energy requirements, implying that they die because of the unavailability of their prey and/or their inability to feed during cyclones. Our study provides essential information on seabird cyclone exposure in a context of marked cyclone regime changes due to global warming.8.
NERC Open Research A... arrow_drop_down Oxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Oxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Turkey, Norway, Turkey, Denmark, FinlandPublisher:Elsevier BV Funded by:AKA | The combined effect of cl..., RCN | BiodivERsA: Integrating c..., AKA | Conservation policy in a ... +2 projectsAKA| The combined effect of climate change and habitat protection on population changes and range shifts in birds ,RCN| BiodivERsA: Integrating citizen science data from national monitoring schemes to predict the impacts of global change scenarios on birds ,AKA| Conservation policy in a changing world: intergrating citizen science data from national monitoring schemes to model impacts of global change scenarios ,RCN| Bird-friendly design of power lines ,AKA| The combined effect of climate change and habitat protection on population changes and range shifts in birdsMichal Baláž; Marko Šćiban; Petr Musil; Samir Sayoud; Web Abdou; Danka Uzunova; Kiraz Erciyas Yavuz; Hichem Azafzaf; Vitor Encarnaçao; Antra Stipniece; Włodzimierz Meissner; Sándor Faragó; Verena Keller; Diego Pavón-Jordán; Leif Nilsson; Tom Langendoen; John J. Borg; Svein Håkon Lorentsen; Tibor Mikuska; Stuart H. M. Butchart; Stuart H. M. Butchart; Teresa Frost; Laimonas Sniauksta; Cristi Domsa; Viktor Natykanets; Mohamed Dakki; Szabolcs Nagy; Danae Portolou; Josef Ridzon; Menno Hornman; Khaled Etayeb; Luca Božič; Goran Topić; Lesley J. Lewis; Valeri Georgiev; Irakli Goratze; Marco Zenatello; Christina Ieronymidou; Vasiliy Kostiushyn; Andrej Vizi; Zuzana Musilová; Blas Molina; Andrea Santangeli; Clemence Gaudard; Leho Luigujoe; Taulant Bino; Anthony D. Fox; Johannes Wahl; Aleksi Lehikoinen; Jean-Yves Paquet; Preben Clausen; Koen Devos; Łukasz Ławicki; Norbert Teufelbauer;handle: 10138/325652 , 11250/2654991
Les oiseaux d'eau migrateurs ont besoin d'un réseau cohérent et efficacement conservé de zones humides tout au long de leur aire de répartition et de leur cycle de vie. En cas de changement climatique rapide, les réseaux d'aires protégées (AP) doivent être en mesure de s'adapter aux changements d'aire de répartition de la faune liés au climat s'ils veulent continuer à être efficaces à l'avenir. Ainsi, nous avons étudié la variation géographique de la relation entre l'anomalie locale de température et l'abondance de 61 espèces d'oiseaux d'eau pendant la saison hivernale en Europe et en Afrique du Nord entre 1990 et 2015. Nous avons également comparé les effets spatio-temporels sur l'abondance des sites désignés comme AP, Zones Importantes pour les Oiseaux et la Biodiversité (ZICO), les deux, ou aucune désignation (Non répertorié). L'abondance des oiseaux d'eau était positivement corrélée à une anomalie de température, cette tendance étant la plus forte vers le nord et l'est de l'Europe. L'abondance des oiseaux d'eau était plus élevée à l'intérieur des ZICO, qu'elles soient légalement protégées ou non. Les tendances en matière d'abondance des oiseaux d'eau ont également été systématiquement plus positives à l'intérieur des ZICO protégées et non protégées dans l'ensemble de la région d'étude, et ont été positives dans les zones humides non répertoriées du sud-ouest de l'Europe et de l'Afrique du Nord. Ces résultats suggèrent que les ZICO sont des sites importants pour l'hivernage des oiseaux aquatiques, mais aussi que les populations se déplacent vers des zones humides non protégées (dont certaines sont des ZICO). Ces ZICO peuvent donc représenter des sites candidats robustes pour étendre le réseau de zones humides légalement protégées par le changement climatique en Europe du Nord-Est. Ces résultats soulignent la nécessité d'un suivi pour comprendre comment l'efficacité des réseaux de sites évolue sous le changement climatique. Las aves acuáticas migratorias requieren una red cohesiva efectivamente conservada de áreas de humedales a lo largo de su área de distribución y ciclo de vida. Bajo el rápido cambio climático, las redes de áreas protegidas (AP) deben ser capaces de adaptarse a los cambios en el rango de distribución de la vida silvestre provocados por el clima si quieren seguir siendo efectivas en el futuro. Por lo tanto, investigamos la variación geográfica en la relación entre la anomalía de la temperatura local y la abundancia de 61 especies de aves acuáticas durante la temporada de invernada en Europa y el norte de África durante 1990–2015. También comparamos los efectos espacio-temporales sobre la abundancia de sitios designados como AP, Aves Importantes y Áreas de Biodiversidad (iba), ambas o ninguna designación (No listado). La abundancia de aves acuáticas se correlacionó positivamente con la anomalía de la temperatura, siendo este patrón más fuerte hacia el norte y el este de Europa. La abundancia de aves acuáticas era mayor dentro de las iba, estuvieran protegidas legalmente o no. Las tendencias en la abundancia de aves acuáticas también fueron consistentemente más positivas dentro de las iba protegidas y no protegidas en toda la región del estudio, y fueron positivas en los humedales no listados en el suroeste de Europa y el norte de África. Estos resultados sugieren que las iba son sitios importantes para las aves acuáticas invernantes, pero también que las poblaciones se están desplazando a humedales no protegidos (algunos de los cuales son iba). Por lo tanto, tales iba pueden representar sitios candidatos sólidos para expandir la red de humedales legalmente protegidos bajo el cambio climático en el noreste de Europa. Estos resultados subrayan la necesidad de monitoreo para comprender cómo la efectividad de las redes de sitios está cambiando bajo el cambio climático. Migratory waterbirds require an effectively conserved cohesive network of wetland areas throughout their range and life-cycle. Under rapid climate change, protected area (PA) networks need to be able to accommodate climate-driven range shifts in wildlife if they are to continue to be effective in the future. Thus, we investigated geographical variation in the relationship between local temperature anomaly and the abundance of 61 waterbird species during the wintering season across Europe and North Africa during 1990–2015. We also compared the spatio-temporal effects on abundance of sites designated as PAs, Important Bird and Biodiversity Areas (IBAs), both, or neither designation (Unlisted). Waterbird abundance was positively correlated with temperature anomaly, with this pattern being strongest towards north and east Europe. Waterbird abundance was higher inside IBAs, whether they were legally protected or not. Trends in waterbird abundance were also consistently more positive inside both protected and unprotected IBAs across the whole study region, and were positive in Unlisted wetlands in southwestern Europe and North Africa. These results suggest that IBAs are important sites for wintering waterbirds, but also that populations are shifting to unprotected wetlands (some of which are IBAs). Such IBAs may therefore represent robust candidate sites to expand the network of legally protected wetlands under climate change in north-eastern Europe. These results underscore the need for monitoring to understand how the effectiveness of site networks is changing under climate change. تتطلب الطيور المائية المهاجرة شبكة متماسكة محفوظة بشكل فعال من مناطق الأراضي الرطبة طوال مداها ودورة حياتها. في ظل التغير المناخي السريع، يجب أن تكون شبكات المناطق المحمية قادرة على استيعاب تحولات النطاق التي يحركها المناخ في الحياة البرية إذا كان لها أن تستمر في أن تكون فعالة في المستقبل. وبالتالي، قمنا بدراسة التباين الجغرافي في العلاقة بين شذوذ درجة الحرارة المحلية ووفرة 61 نوعًا من الطيور المائية خلال فصل الشتاء في جميع أنحاء أوروبا وشمال إفريقيا خلال الفترة 1990–2015. قارنا أيضًا التأثيرات المكانية والزمانية على وفرة المواقع المصنفة على أنها مناطق محمية، ومناطق مهمة للطيور والتنوع البيولوجي (IBAs)، أو كليهما، أو عدم التسمية (غير مدرجة). ارتبطت وفرة الطيور المائية بشكل إيجابي مع شذوذ درجة الحرارة، مع كون هذا النمط أقوى نحو شمال وشرق أوروبا. كانت وفرة الطيور المائية أعلى داخل IBAs، سواء كانت محمية قانونًا أم لا. كانت الاتجاهات في وفرة الطيور المائية أكثر إيجابية باستمرار داخل كل من IBAs المحمية وغير المحمية في جميع أنحاء منطقة الدراسة، وكانت إيجابية في الأراضي الرطبة غير المدرجة في جنوب غرب أوروبا وشمال أفريقيا. تشير هذه النتائج إلى أن IBAs هي مواقع مهمة للطيور المائية الشتوية، ولكن أيضًا أن السكان يتحولون إلى الأراضي الرطبة غير المحمية (بعضها IBAs). وبالتالي، قد تمثل هذه الهيئات المستقلة مواقع مرشحة قوية لتوسيع شبكة الأراضي الرطبة المحمية قانونًا في ظل تغير المناخ في شمال شرق أوروبا. وتؤكد هذه النتائج الحاجة إلى الرصد لفهم كيفية تغير فعالية شبكات المواقع في ظل تغير المناخ.
Biological Conservat... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiOndokuz Mayıs University Institutional RepositoryArticle . 2020Data sources: Ondokuz Mayıs University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2020.108549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert Biological Conservat... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiOndokuz Mayıs University Institutional RepositoryArticle . 2020Data sources: Ondokuz Mayıs University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2020.108549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Publicly fundedSigne Christensen-Dalsgaard; Aevar Petersen; Olivier Chastel; Francis Daunt; Flemming Merkel; Tim Guilford; Alexeï Ezhov; Nicolas Courbin; Amy Lee Kouwenberg; Paul D. Mathewson; Warren P. Porter; Grant Gilchrist; Kasper Lambert Johansen; William A. Montevecchi; Mark Newell; K. E. Erikstad; David Grémillet; David Grémillet; Hallvard Strøm; Michelle G. Fitzsimmons; Jóhannis Danielsen; Tony Diamond; Annette L. Fayet; Sébastien Descamps; Børge Moe; Mark L. Mallory; Vegard Sandøy Bråthen; Laura McFarlane Tranquilla; Jannie F. Linnebjerg; Svein-Håkon Lorentsen; Mark Baran; Nina Dehnhard; Geir Helge Systad; Hálfdán Helgi Helgason; Manon Clairbaux; Nicholas Per Huffeldt; Per Fauchald; T. K. Reiertsen; Tycho Anker-Nilssen; Jérôme Fort; Bergur Olsen; Benjamin Merkel; Ingar S. Bringsvor; Þorkell Lindberg Þórarinsson; Morten Frederiksen; Maria Gavrilo; Magdalene Langset; Mark Jessopp; Anders Mosbech; William W. L. Cheung; Yuri Krasnov;doi: 10.1111/gcb.15497
pmid: 33347684
AbstractWe explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine‐protected areas in a changing ocean.
NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Norway, United Kingdom, FrancePublisher:Elsevier BV Publicly fundedFunded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Mark Baran; Thorkell Lindberg Thórarinsson; Annette L. Fayet; Mark Newell; Laura McFarlane Tranquilla; Paul D. Mathewson; Mark Jessopp; H. G. Gilchrist; Manon Clairbaux; David Grémillet; David Grémillet; Kasper Lambert Johansen; Jannie F. Linnebjerg; Sébastien Descamps; Signe Christensen-Dalsgaard; Børge Moe; Tone Kristin Reiertsen; Nina Dehnhard; Aevar Petersen; Olivier Chastel; Geir Helge Systad; Hálfdán Helgi Helgason; Francis Daunt; Nicholas Per Huffeldt; Ingar S. Bringsvor; Flemming Merkel; Tim Guilford; Tycho Anker-Nilssen; Per Fauchald; Bergur Olsen; Morten Frederiksen; Maria Gavrilo; Warren P. Porter; Jérôme Fort; William A. Montevecchi; Magdalene Langset; Anders Mosbech; Svein-H. Lorentsen; Vegard Sandøy Bråthen; Yuri Krasnov; Amy-Lee Kouwenberg; Hallvard Strøm; A.V. Ezhov; Michelle G. Fitzsimmons; Jóhannis Danielsen; Tony Diamond; Heather L. Major; Benjamin Merkel; Kjell Einar Erikstad; Kjell Einar Erikstad; Mark L. Mallory;Each winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks."1-3 During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics4,5 by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction. However, most often the geographic origins of impacted seabirds and the causes of their deaths remain unclear.6 We performed the first ocean-basin scale assessment of cyclone exposure in a seabird community by coupling winter tracking data for ∼1,500 individuals of five key North Atlantic seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia, and Rissa tridactyla) and cyclone locations. We then explored the energetic consequences of different cyclonic conditions using a mechanistic bioenergetics model7 and tested the hypothesis that cyclones dramatically increase seabird energy requirements. We demonstrated that cyclones of high intensity impacted birds from all studied species and breeding colonies during winter but especially those aggregating in the Labrador Sea, the Davis Strait, the surroundings of Iceland, and the Barents Sea. Our broad-scale analyses suggested that cyclonic conditions do not increase seabird energy requirements, implying that they die because of the unavailability of their prey and/or their inability to feed during cyclones. Our study provides essential information on seabird cyclone exposure in a context of marked cyclone regime changes due to global warming.8.
NERC Open Research A... arrow_drop_down Oxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Oxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.06.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu