Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patricia Sarai da Silva; Leandro Esteban Miranda; Sergio Makrakis; Lucileine de Assumpção; +2 Authors

    Abstract Conservation of fish assemblages in severely impounded rivers has often focused on providing longitudinal and lateral connectivity along the main stem. Less attention has been given to tributaries, some of which remain unimpounded. This study shows that the biodiversity of ichthyoplankton in tributaries to the largest reservoir in the Paraná River, Brazil, is similar to that of tributaries of the few remaining unimpounded stretches of the Paraná River. Annual and seasonal variability in discharge within and among tributaries attracts and supports a diverse mix of species in each spawning season. Tributaries enrich the fish biodiversity of the entire system by providing a variety of environmental conditions, access to spawning habitat, refugia for early life stages, and by promoting ecological heterogeneity. Thus, tributaries can mitigate the adverse influence of an impounded main stem. Tributaries also support populations of endangered and threatened species. A focus on tributaries offers conservation alternatives that are more feasible given the scale and large number of impoundments constructed on the main stem. Conservation in the main stem may focus on maintaining passage through dams and access to large floodplains. Conversely, in tributaries conservation may focus on managing the quality of inflows from catchments, preserving suitable instream habitats and flows, and preserving access to smaller but more numerous floodplains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Conservation...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Conservation Marine and Freshwater Ecosystems
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Conservation...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Conservation Marine and Freshwater Ecosystems
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ana García-Vega; Francisco Javier Sanz-Ronda; Leandro Fernandes Celestino; Sergio Makrakis; +1 Authors

    Brown trout uses river flow and thermal regimens as main stimuli for initiating and maintaining behavioral reactions such as migration and spawning. Therefore, anthropogenic alterations on these factors may have strong impacts on its populations. The aim of this work is to understand these consequences by assessing potamodromous brown trout movements in the past and present, and to model future responses. For this, brown trout movements in a fishway in the Marin River (Bidasoa basin, Northern Iberian Peninsula) have been monitored from 2008 to 2017. Random forest regression has been used to assess the influence of environmental variables on brown trout movements and to model the response under hypothetical climatic and hydrological scenarios. Results show that brown trout uses the fishway during the whole year, with more upstream movements during the spawning season. The model is able to predict accurately the timing and number of migrants. Its use under hypothetical climate change and flow regulation scenarios shows a delay in the migration time. Therefore, modelling using large time series can be a powerful tool to define management and conservation strategies and prepare compensation measures for future scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jorge Valbuena-Castro; Jorge Ruiz-Legazpi; Francisco Javier Bravo-Córdoba; Francisco Javier Sanz-Ronda; +2 Authors

    Abstract When engineers and ecologists face a fishway design, many issues need to be considered, the type of fishway being the first and foremost. It is an especially complex issue in areas with species whose migratory and swimming behavior are as yet poorly known as Mediterranean barbels. The present study focuses on the fish passage of two of the most common types of technical fishways: Vertical Slot (VS), and Submerged Notch with Bottom Orifice (SNBO). Both types were studied and compared in terms of ascent ability (as the success rate and transit time) and motivation (as the proportion of attempts and attempt rate), with Iberian barbel (Luciobarbus bocagei) as the target species. Ascent ability in VS and SNBO were similar. More than 90% of fish ascended the fishways successfully and the median transit time to ascend a total water height of 2.25 m was less than 23 min. Fish length had an effect on ascent time, with the biggest ones being faster. Motivation was greater for VS, although not seeming to have a relevant influence in the passage. These results support the use of VS and SNBO in areas with Iberian barbel and provide new data of fishways performance helping ecologists and engineers with their decision making, mainly in Mediterranean areas with similar habitats and species.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Engineeri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Ecological Engineering
    Article . 2018 . Peer-reviewed
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Engineeri...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Ecological Engineering
      Article . 2018 . Peer-reviewed
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patricia Sarai da Silva; Leandro Esteban Miranda; Sergio Makrakis; Lucileine de Assumpção; +2 Authors

    Abstract Conservation of fish assemblages in severely impounded rivers has often focused on providing longitudinal and lateral connectivity along the main stem. Less attention has been given to tributaries, some of which remain unimpounded. This study shows that the biodiversity of ichthyoplankton in tributaries to the largest reservoir in the Paraná River, Brazil, is similar to that of tributaries of the few remaining unimpounded stretches of the Paraná River. Annual and seasonal variability in discharge within and among tributaries attracts and supports a diverse mix of species in each spawning season. Tributaries enrich the fish biodiversity of the entire system by providing a variety of environmental conditions, access to spawning habitat, refugia for early life stages, and by promoting ecological heterogeneity. Thus, tributaries can mitigate the adverse influence of an impounded main stem. Tributaries also support populations of endangered and threatened species. A focus on tributaries offers conservation alternatives that are more feasible given the scale and large number of impoundments constructed on the main stem. Conservation in the main stem may focus on maintaining passage through dams and access to large floodplains. Conversely, in tributaries conservation may focus on managing the quality of inflows from catchments, preserving suitable instream habitats and flows, and preserving access to smaller but more numerous floodplains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Conservation...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Conservation Marine and Freshwater Ecosystems
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Conservation...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Conservation Marine and Freshwater Ecosystems
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ana García-Vega; Francisco Javier Sanz-Ronda; Leandro Fernandes Celestino; Sergio Makrakis; +1 Authors

    Brown trout uses river flow and thermal regimens as main stimuli for initiating and maintaining behavioral reactions such as migration and spawning. Therefore, anthropogenic alterations on these factors may have strong impacts on its populations. The aim of this work is to understand these consequences by assessing potamodromous brown trout movements in the past and present, and to model future responses. For this, brown trout movements in a fishway in the Marin River (Bidasoa basin, Northern Iberian Peninsula) have been monitored from 2008 to 2017. Random forest regression has been used to assess the influence of environmental variables on brown trout movements and to model the response under hypothetical climatic and hydrological scenarios. Results show that brown trout uses the fishway during the whole year, with more upstream movements during the spawning season. The model is able to predict accurately the timing and number of migrants. Its use under hypothetical climate change and flow regulation scenarios shows a delay in the migration time. Therefore, modelling using large time series can be a powerful tool to define management and conservation strategies and prepare compensation measures for future scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jorge Valbuena-Castro; Jorge Ruiz-Legazpi; Francisco Javier Bravo-Córdoba; Francisco Javier Sanz-Ronda; +2 Authors

    Abstract When engineers and ecologists face a fishway design, many issues need to be considered, the type of fishway being the first and foremost. It is an especially complex issue in areas with species whose migratory and swimming behavior are as yet poorly known as Mediterranean barbels. The present study focuses on the fish passage of two of the most common types of technical fishways: Vertical Slot (VS), and Submerged Notch with Bottom Orifice (SNBO). Both types were studied and compared in terms of ascent ability (as the success rate and transit time) and motivation (as the proportion of attempts and attempt rate), with Iberian barbel (Luciobarbus bocagei) as the target species. Ascent ability in VS and SNBO were similar. More than 90% of fish ascended the fishways successfully and the median transit time to ascend a total water height of 2.25 m was less than 23 min. Fish length had an effect on ascent time, with the biggest ones being faster. Motivation was greater for VS, although not seeming to have a relevant influence in the passage. These results support the use of VS and SNBO in areas with Iberian barbel and provide new data of fishways performance helping ecologists and engineers with their decision making, mainly in Mediterranean areas with similar habitats and species.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Engineeri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Engineering
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Ecological Engineering
    Article . 2018 . Peer-reviewed
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Engineeri...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Engineering
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Ecological Engineering
      Article . 2018 . Peer-reviewed
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph