- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Spain, Netherlands, NetherlandsPublisher:Wiley Funded by:UKRI | Linkages between plant fu..., UKRI | Other Countries Partnerin..., UKRI | Resilience and regime shi...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grassland ,UKRI| Other Countries Partnering Award, Australia: A rhizotrait framework for the northern and southern hemispheres ,UKRI| Resilience and regime shifts in peatland microbial communities: implications for soil functioningBelinda E. Medlyn; Marta Dondini; Mathilde Chomel; Benjamin G. Jackson; Pete Smith; Laura Castañeda-Gómez; Yolima Carrillo; Mingkai Jiang; Jonathan R. De Long; Lucía Álvarez Garrido; Lucía Álvarez Garrido; Shun Hasegawa; Ellen L. Fry; Elizabeth M. Baggs; Jocelyn M. Lavallee; Brajesh K. Singh; David W. Johnson; Sara Hortal; Jennifer M. Rhymes; Jennifer M. Rhymes; Nil Alvarez; Ian C. Anderson; Richard D. Bardgett; John E. Drake; John E. Drake;AbstractProcess‐based models describing biogeochemical cycling are crucial tools to understanding long‐term nutrient dynamics, especially in the context of perturbations, such as climate and land‐use change. Such models must effectively synthesize ecological processes and properties. For example, in terrestrial ecosystems, plants are the primary source of bioavailable carbon, but turnover rates of essential nutrients are contingent on interactions between plants and soil biota. Yet, biogeochemical models have traditionally considered plant and soil communities in broad terms. The next generation of models must consider how shifts in their diversity and composition affect ecosystem processes.One promising approach to synthesize plant and soil biodiversity and their interactions into models is to consider their diversity from a functional trait perspective. Plant traits, which include heritable chemical, physical, morphological and phenological characteristics, are increasingly being used to predict ecosystem processes at a range of scales, and to interpret biodiversity–ecosystem functional relationships. There is also emerging evidence that the traits of soil microbial and faunal communities can be correlated with ecosystem functions such as decomposition, nutrient cycling, and greenhouse gas production.Here, we draw on recent advances in measuring and using traits of different biota to predict ecosystem processes, and provide a new perspective as to how biotic traits can be integrated into biogeochemical models. We first describe an explicit trait‐based model framework that operates at small scales and uses direct measurements of ecosystem properties; second, an integrated approach that operates at medium scales and includes interactions between biogeochemical cycling and soil food webs; and third, an implicit trait‐based model framework that associates soil microbial and faunal functional groups with plant functional groups, and operates at the Earth‐system level. In each of these models, we identify opportunities for inclusion of traits from all three groups to reduce model uncertainty and improve understanding of biogeochemical cycles.These model frameworks will generate improved predictive capacity of how changes in biodiversity regulate biogeochemical cycles in terrestrial ecosystems. Further, they will assist in developing a new generation of process‐based models that include plant, microbial, and faunal traits and facilitate dialogue between empirical researchers and modellers.
Methods in Ecology a... arrow_drop_down Methods in Ecology and EvolutionArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryMethods in Ecology and EvolutionArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/2041-210x.13092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Methods in Ecology a... arrow_drop_down Methods in Ecology and EvolutionArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryMethods in Ecology and EvolutionArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/2041-210x.13092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Germany, SwitzerlandPublisher:The Royal Society Rutger A. Wilschut; Jonathan R. De Long; Stefan Geisen; S. Emilia Hannula; Casper W. Quist; Basten Snoek; Katja Steinauer; E. R. Jasper Wubs; Qiang Yang; Madhav P. Thakur;pmid: 36196543
pmc: PMC9533002
Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse- than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Proceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: Pure Utrecht UniversityLeiden University Scholarly Publications RepositoryArticle . 2022License: CC BYData sources: Leiden University Scholarly Publications RepositoryWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.1178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Proceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: Pure Utrecht UniversityLeiden University Scholarly Publications RepositoryArticle . 2022License: CC BYData sources: Leiden University Scholarly Publications RepositoryWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.1178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Linkages between plant fu...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grasslandJonathan R. De Long; Marina Semchenko; William J. Pritchard; Irene Cordero; Ellen L. Fry; Benjamin G. Jackson; Ksenia Kurnosova; Nicholas J. Ostle; David Johnson; Elizabeth M. Baggs; Richard D. Bardgett;pmid: 31588158
pmc: PMC6767434
Abstract Maternal effects (i.e. trans‐generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood. We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions. Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass. These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.
Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:The Royal Society Authors: Paul Kardol; Jonathan R. De Long; David A. Wardle;Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3 ° C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature.
Royal Society Open S... arrow_drop_down Royal Society Open ScienceArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.140141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Royal Society Open S... arrow_drop_down Royal Society Open ScienceArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.140141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, Denmark, France, France, France, France, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Specialists at work: how ..., NSF | SG: Understanding local c..., EC | SPECIALSNWO| Specialists at work: how decomposers break down plant litter ,NSF| SG: Understanding local controls on wood decomposition in a regional context ,EC| SPECIALSDavid A. Wardle; David A. Wardle; Maria Viketoft; Marta Manrubia-Freixa; Anne Bonis; Wim H. van der Putten; Thomas W. Crowther; William R. Wieder; Aimée T. Classen; Aimée T. Classen; Mark A. Bradford; Gregory S. Newman; Gregory S. Newman; J. Hans C. Cornelissen; G F Ciska Veen; Daniel S. Maynard; Grégoire T. Freschet; Ella M. Bradford; Richard S.P. Logtestijn; Jonathan R. De Long; Paul Kardol; Stephen A. Wood;Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.
Hyper Article en Lig... arrow_drop_down Archive Ouverte de l'Université Rennes (HAL)Article . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0367-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 200 citations 200 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Archive Ouverte de l'Université Rennes (HAL)Article . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0367-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Embargo end date: 02 Sep 2024 Netherlands, Netherlands, Switzerland, Netherlands, SwedenPublisher:Frontiers Media SA Funded by:NWO | Living legacies: Influenc...NWO| Living legacies: Influence of plant-mediated changes in soil communities on aboveground plant-insect interactionsAuthors: Jonathan R. De Long; Nadia I. Maaroufi; Nadia I. Maaroufi;Forest ecosystems are subjected to global change drivers worldwide, such as increasing temperature, atmospheric carbon dioxide, nutrient pollution, as well as changes in fire and precipitation regimes. These global change drivers have greatly modified the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), which has an impact on primary productivity in forest ecosystems and in turn, affect the quality and quantity of resources entering the soil food web. However, C, N, and P soil dynamics have been mostly studied without considering their coupling effects on soil organisms. This is of critical interest because changes in nutrient stoichiometry may have a strong effect on soil biota and the ecosystem functions they drive. Further, most studies have focused on global change effects on bacteria and fungi and their C:N:P stoichiometry, while neglecting other soil organisms at higher trophic levels. This has led to an incomplete understanding of how the entire soil food web drives ecosystem processes involved in organic matter turnover and nutrient cycling. Here, we review studies that investigated how global change drivers impact C:N:P stoichiometry of soil organisms at different trophic levels in forest ecosystems and identify important knowledge gaps. We propose future directions for research on global change impacts on the linkages between soil biota and C:N:P stoichiometry.
Frontiers in Forests... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Forests and Global ChangeArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.00016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Forests... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Forests and Global ChangeArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.00016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Spain, Netherlands, NetherlandsPublisher:Wiley Funded by:UKRI | Linkages between plant fu..., UKRI | Other Countries Partnerin..., UKRI | Resilience and regime shi...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grassland ,UKRI| Other Countries Partnering Award, Australia: A rhizotrait framework for the northern and southern hemispheres ,UKRI| Resilience and regime shifts in peatland microbial communities: implications for soil functioningBelinda E. Medlyn; Marta Dondini; Mathilde Chomel; Benjamin G. Jackson; Pete Smith; Laura Castañeda-Gómez; Yolima Carrillo; Mingkai Jiang; Jonathan R. De Long; Lucía Álvarez Garrido; Lucía Álvarez Garrido; Shun Hasegawa; Ellen L. Fry; Elizabeth M. Baggs; Jocelyn M. Lavallee; Brajesh K. Singh; David W. Johnson; Sara Hortal; Jennifer M. Rhymes; Jennifer M. Rhymes; Nil Alvarez; Ian C. Anderson; Richard D. Bardgett; John E. Drake; John E. Drake;AbstractProcess‐based models describing biogeochemical cycling are crucial tools to understanding long‐term nutrient dynamics, especially in the context of perturbations, such as climate and land‐use change. Such models must effectively synthesize ecological processes and properties. For example, in terrestrial ecosystems, plants are the primary source of bioavailable carbon, but turnover rates of essential nutrients are contingent on interactions between plants and soil biota. Yet, biogeochemical models have traditionally considered plant and soil communities in broad terms. The next generation of models must consider how shifts in their diversity and composition affect ecosystem processes.One promising approach to synthesize plant and soil biodiversity and their interactions into models is to consider their diversity from a functional trait perspective. Plant traits, which include heritable chemical, physical, morphological and phenological characteristics, are increasingly being used to predict ecosystem processes at a range of scales, and to interpret biodiversity–ecosystem functional relationships. There is also emerging evidence that the traits of soil microbial and faunal communities can be correlated with ecosystem functions such as decomposition, nutrient cycling, and greenhouse gas production.Here, we draw on recent advances in measuring and using traits of different biota to predict ecosystem processes, and provide a new perspective as to how biotic traits can be integrated into biogeochemical models. We first describe an explicit trait‐based model framework that operates at small scales and uses direct measurements of ecosystem properties; second, an integrated approach that operates at medium scales and includes interactions between biogeochemical cycling and soil food webs; and third, an implicit trait‐based model framework that associates soil microbial and faunal functional groups with plant functional groups, and operates at the Earth‐system level. In each of these models, we identify opportunities for inclusion of traits from all three groups to reduce model uncertainty and improve understanding of biogeochemical cycles.These model frameworks will generate improved predictive capacity of how changes in biodiversity regulate biogeochemical cycles in terrestrial ecosystems. Further, they will assist in developing a new generation of process‐based models that include plant, microbial, and faunal traits and facilitate dialogue between empirical researchers and modellers.
Methods in Ecology a... arrow_drop_down Methods in Ecology and EvolutionArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryMethods in Ecology and EvolutionArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/2041-210x.13092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Methods in Ecology a... arrow_drop_down Methods in Ecology and EvolutionArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional RepositoryMethods in Ecology and EvolutionArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/2041-210x.13092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, Germany, SwitzerlandPublisher:The Royal Society Rutger A. Wilschut; Jonathan R. De Long; Stefan Geisen; S. Emilia Hannula; Casper W. Quist; Basten Snoek; Katja Steinauer; E. R. Jasper Wubs; Qiang Yang; Madhav P. Thakur;pmid: 36196543
pmc: PMC9533002
Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse- than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Proceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: Pure Utrecht UniversityLeiden University Scholarly Publications RepositoryArticle . 2022License: CC BYData sources: Leiden University Scholarly Publications RepositoryWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.1178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Proceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: Pure Utrecht UniversityLeiden University Scholarly Publications RepositoryArticle . 2022License: CC BYData sources: Leiden University Scholarly Publications RepositoryWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2022Data sources: Konstanzer Online-Publikations-SystemProceedings of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesArticle . 2022License: CC BYData sources: KNAW Pureadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.1178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Linkages between plant fu...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grasslandJonathan R. De Long; Marina Semchenko; William J. Pritchard; Irene Cordero; Ellen L. Fry; Benjamin G. Jackson; Ksenia Kurnosova; Nicholas J. Ostle; David Johnson; Elizabeth M. Baggs; Richard D. Bardgett;pmid: 31588158
pmc: PMC6767434
Abstract Maternal effects (i.e. trans‐generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood. We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions. Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass. These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.
Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:The Royal Society Authors: Paul Kardol; Jonathan R. De Long; David A. Wardle;Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3 ° C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature.
Royal Society Open S... arrow_drop_down Royal Society Open ScienceArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.140141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Royal Society Open S... arrow_drop_down Royal Society Open ScienceArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsos.140141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, Denmark, France, France, France, France, France, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Specialists at work: how ..., NSF | SG: Understanding local c..., EC | SPECIALSNWO| Specialists at work: how decomposers break down plant litter ,NSF| SG: Understanding local controls on wood decomposition in a regional context ,EC| SPECIALSDavid A. Wardle; David A. Wardle; Maria Viketoft; Marta Manrubia-Freixa; Anne Bonis; Wim H. van der Putten; Thomas W. Crowther; William R. Wieder; Aimée T. Classen; Aimée T. Classen; Mark A. Bradford; Gregory S. Newman; Gregory S. Newman; J. Hans C. Cornelissen; G F Ciska Veen; Daniel S. Maynard; Grégoire T. Freschet; Ella M. Bradford; Richard S.P. Logtestijn; Jonathan R. De Long; Paul Kardol; Stephen A. Wood;Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.
Hyper Article en Lig... arrow_drop_down Archive Ouverte de l'Université Rennes (HAL)Article . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0367-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 200 citations 200 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Archive Ouverte de l'Université Rennes (HAL)Article . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://univ-rennes.hal.science/hal-01659442Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0367-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Embargo end date: 02 Sep 2024 Netherlands, Netherlands, Switzerland, Netherlands, SwedenPublisher:Frontiers Media SA Funded by:NWO | Living legacies: Influenc...NWO| Living legacies: Influence of plant-mediated changes in soil communities on aboveground plant-insect interactionsAuthors: Jonathan R. De Long; Nadia I. Maaroufi; Nadia I. Maaroufi;Forest ecosystems are subjected to global change drivers worldwide, such as increasing temperature, atmospheric carbon dioxide, nutrient pollution, as well as changes in fire and precipitation regimes. These global change drivers have greatly modified the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), which has an impact on primary productivity in forest ecosystems and in turn, affect the quality and quantity of resources entering the soil food web. However, C, N, and P soil dynamics have been mostly studied without considering their coupling effects on soil organisms. This is of critical interest because changes in nutrient stoichiometry may have a strong effect on soil biota and the ecosystem functions they drive. Further, most studies have focused on global change effects on bacteria and fungi and their C:N:P stoichiometry, while neglecting other soil organisms at higher trophic levels. This has led to an incomplete understanding of how the entire soil food web drives ecosystem processes involved in organic matter turnover and nutrient cycling. Here, we review studies that investigated how global change drivers impact C:N:P stoichiometry of soil organisms at different trophic levels in forest ecosystems and identify important knowledge gaps. We propose future directions for research on global change impacts on the linkages between soil biota and C:N:P stoichiometry.
Frontiers in Forests... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Forests and Global ChangeArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.00016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Forests... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefFrontiers in Forests and Global ChangeArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.00016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu