- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Gustavo Marini; Nicola Fontana; Marco Maio; Francesco Di Menna; Maurizio Giugni;doi: 10.3390/w15020286
Optimizing pump operation in water networks can effectively reduce the cost of energy. To this end, the literature provides many methodologies, generally based on an optimization problem, that provide the optimal operation of the pumps. However, a persistent shortcoming in the literature is the lack of further analysis to assess if the obtained solutions are feasible from the technical point of view. This paper first showed that some of these available methodologies identify solutions that are technically unfeasible because they induce tank overflow or continuous pump switching, and consequently, proposed a novel approach to avoiding such unfeasible solutions. This consisted in comparing the number of time-steps performed by the hydraulic simulator with the predicted value, calculated as the ratio between the simulation duration and the hydraulic time-step. Finally, we developed a new model which couples Epanet 2.0 with Pikaia Genetic Algorithm using the energy cost as an objective function. The proposed method, being easily exportable into existing methodologies to overcome the limitations thereof, thus represents a substantial contribution to the field of pump scheduling for optimal operation of water distribution networks. The new method, tested on two case studies in the literature, proved its reliability in both cases, returning technically feasible solutions.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MIURMIURMarco Maio; Elisa Marrasso; Carlo Roselli; Maurizio Sasso; Nicola Fontana; Gustavo Marini;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:MDPI AG Gustavo Marini; Marco Maio; Francesco Di Menna; Francesco Pugliese; Francesco De Paola; Nicola Fontana;handle: 11588/908174
While pressure reducing valves (PRVs) have been widely used in water distribution networks (WDNs) to reduce water leakage, research in recent years has focused on the use of turbines instead of PRVs as the means for enabling both pressure reduction and energy production. However, in WDNs daily continuous variability of flow discharge and upstream head make PAT selection a challenging issue. The present paper describes an innovative approach for optimal PAT selection in systems with hydraulic and/or electrical regulation. The methodology was also applied to a district of the Benevento, Italy, WDN, showing the effectiveness of the proposed approach. The findings showed the optimal pumps lie in the vicinity of the maximum of the produced energy. Furthermore, considering weekday pattern instead of long-period pattern gives reliable results only if the PAT system operated with hydraulic regulation.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/enviro...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environsciproc2022021025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/enviro...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environsciproc2022021025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Gustavo Marini; Nicola Fontana; Marco Maio; Francesco Di Menna; Maurizio Giugni;doi: 10.3390/w15020286
Optimizing pump operation in water networks can effectively reduce the cost of energy. To this end, the literature provides many methodologies, generally based on an optimization problem, that provide the optimal operation of the pumps. However, a persistent shortcoming in the literature is the lack of further analysis to assess if the obtained solutions are feasible from the technical point of view. This paper first showed that some of these available methodologies identify solutions that are technically unfeasible because they induce tank overflow or continuous pump switching, and consequently, proposed a novel approach to avoiding such unfeasible solutions. This consisted in comparing the number of time-steps performed by the hydraulic simulator with the predicted value, calculated as the ratio between the simulation duration and the hydraulic time-step. Finally, we developed a new model which couples Epanet 2.0 with Pikaia Genetic Algorithm using the energy cost as an objective function. The proposed method, being easily exportable into existing methodologies to overcome the limitations thereof, thus represents a substantial contribution to the field of pump scheduling for optimal operation of water distribution networks. The new method, tested on two case studies in the literature, proved its reliability in both cases, returning technically feasible solutions.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MIURMIURMarco Maio; Elisa Marrasso; Carlo Roselli; Maurizio Sasso; Nicola Fontana; Gustavo Marini;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:MDPI AG Gustavo Marini; Marco Maio; Francesco Di Menna; Francesco Pugliese; Francesco De Paola; Nicola Fontana;handle: 11588/908174
While pressure reducing valves (PRVs) have been widely used in water distribution networks (WDNs) to reduce water leakage, research in recent years has focused on the use of turbines instead of PRVs as the means for enabling both pressure reduction and energy production. However, in WDNs daily continuous variability of flow discharge and upstream head make PAT selection a challenging issue. The present paper describes an innovative approach for optimal PAT selection in systems with hydraulic and/or electrical regulation. The methodology was also applied to a district of the Benevento, Italy, WDN, showing the effectiveness of the proposed approach. The findings showed the optimal pumps lie in the vicinity of the maximum of the produced energy. Furthermore, considering weekday pattern instead of long-period pattern gives reliable results only if the PAT system operated with hydraulic regulation.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/enviro...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environsciproc2022021025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/enviro...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environsciproc2022021025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu