- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Portugal, Spain, France, France, Italy, France, Portugal, South Africa, France, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERT, FCT | CEECIND/02453/2018/CP1534/CT0001EC| BIODESERT ,FCT| CEECIND/02453/2018/CP1534/CT0001Authors: Díaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; +123 AuthorsDíaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; Eldridge, David; Saiz, Hugo; Gross, Nicolas; Le Bagousse-Pinguet, Yoann; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Asensio, Sergio; Berdugo, Miguel; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gil, Juan; Zaccone, Claudio; Panettieri, Marco; García-Palacios, Pablo; Fan, Wei; Benavente-Ferraces, Iria; Rey, Ana; Eisenhauer, Nico; Cesarz, Simone; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Aramayo, Valeria; Arroyo, Antonio; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Branquinho, Cristina; Bu, Chongfeng; Cáceres, Yonatan; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Dickman, Christopher; Donoso, David; Dougill, Andrew; Durán, Jorge; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gusman Montalván, Elizabeth; Hernández-Hernández, Rosa; von Hessberg, Andreas; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Geissler, Katja; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Koopman, Jessica; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Mazaneda, Antonio; Mcclaran, Mitchel; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Osborne, Brooke; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Reyes, Victor; Rodríguez, Alexandra; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Julius; Sloan, Michael; Solongo, Shijirbaatar; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valko, Orsolya; van den Brink, Liesbeth; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zeberio, Juan; Zhang, Yuanming; Zhou, Xiaobing; Plaza, César;handle: 10261/364882 , 11562/1132966 , 20.500.14352/114759 , 2263/98010
This research was funded by the European Research Council (ERC Grant agreement 647038, BIODESERT), the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00) and Generalitat Valenciana (CIDEGENT/2018/041), with additional support by the University of Alicante (UADIF22-74 and VIGROB22-350). F.T.M. acknowledges support from the King Abdullah University of Science and Technology (KAUST) and the KAUST Climate and Livability Initiative. D.J.E. is supported by the Hermon Slade Foundation. H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. L.W. acknowledges support from the US National Science Foundation (EAR 1554894). B.B. and S.S. were supported by the Taylor Family–Asia Foundation Endowed Chair in Ecology and Conservation Biology. M.B. acknowledges support from a Ramón y Cajal grant from the Spanish Ministry of Science (RYC2021-031797-I). A.L. and L.K. acknowledge support from the German Research Foundation, DFG (grant CRC TRR228) and German Federal Government for Science and Education, BMBF (grants 01LL1802C and 01LC1821A). L.K. acknowledges travel funds from the Hans Merensky Foundation. A.N. and C. Branquinho acknowledge support from FCT—Fundação para a Ciência e a Tecnologia (CEECIND/02453/2018/CP1534/CT0001, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), from AdaptForGrazing project (PRR-C05-i03-I-000035) and from LTsER Montado platform (LTER_EU_PT_001). S.C.R. was supported by NASA (NNH22OB92A) and is grateful to E. Geiger, A. Howell, R. Reibold, N. Melone and M. Starbuck for field support. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We thank the landowners for granting access to the sites and many people and their institutions for supporting our fieldwork activities: L. Eloff, J. J. Jordaan, E. Mudongo, V. Mokoka, B. Mokhou, T. Maphanga, D. Thompson (SAEON), A. S. K. Frank, R. Matjea, F. Hoffmann, C. Goebel, the University of Limpopo, South African Environmental Observation Network (SAEON), the South African Military and the Scientific Services Kruger National Park. Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil carbon and is assumed less sensitive to climate than particulate organic carbon (POC) due to protection by minerals. Despite its importance for long-term carbon storage, the response of MAOC to changing climates in drylands, which cover more than 40% of the global land area, remains unexplored. Here we assess topsoil organic carbon fractions across global drylands using a standardized field survey in 326 plots from 25 countries and 6 continents. We find that soil biogeochemistry explained the majority of variation in both MAOC and POC. Both carbon fractions decreased with increases in mean annual temperature and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our results suggest that ongoing climate warming and aridification may result in unforeseen carbon losses across global drylands, and that the protective role of minerals may not dampen these effects. 19 páginas total artículo.- 3 figuras.- 33 referencias y 4 figuras.- 2 tablas.- 68 referencias.- The online version contains supplementary material available and extended data is available for this paper at https://doi.org/10.1038/s41558-024-02087-y No
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 179visibility views 179 download downloads 459 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Jan 2025 Spain, France, United States, Portugal, United States, Portugal, Spain, Spain, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | EarthShape: Earth Surface..., EC | BIODESERT, DFG | Future Rural Africa: Futu... +1 projectsDFG| EarthShape: Earth Surface Shaping by Biota ,EC| BIODESERT ,DFG| Future Rural Africa: Future-making and social-ecological transformation ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyBiancari, Lucio; Aguiar, Martín; Eldridge, David; Oñatibia, Gastón; Le Bagousse-Pinguet, Yoann; Saiz, Hugo; Gross, Nicolas; Austin, Amy; Ochoa, Victoria; Gozalo, Beatriz; Asensio, Sergio; Guirado, Emilio; Valencia, Enrique; Berdugo, Miguel; Plaza, César; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gómez, Miguel; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Anadón, José; Aramayo, Valeria; Arredondo, Tulio; Bader, Maaike; Bahalkeh, Khadijeh; Salem, Farah Ben; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; Bu, Chongfeng; Byambatsogt, Batbold; Calvo, Dianela; Castillo Monroy, Andrea; Castro, Helena; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Donoso, David; Dougill, Andrew; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gherardi, Laureano; Gusmán-Montalván, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Köbel, Melanie; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Oliva, Gabriel; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Rey, Pedro; Rodríguez, Alexandra; Rodríguez, Laura; Rolo, Víctor; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; van den Brink, Liesbeth; Wagner, Viktoria; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wolff, Peter; Yahdjian, Laura; Zaady, Eli; Maestre, Fernando;handle: 10261/373769 , 10045/147812 , 1805/44453
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 79visibility views 79 download downloads 77 Powered bymore_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors: Heather L. Throop; Steven R. Archer;doi: 10.1890/06-0889.1
pmid: 17913142
Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush management on leaf litter decomposition in a semidesert grassland where velvet mesquite (Prosopis velutina) abundance has increased over the past 100 years. This change in physiognomy may affect decomposition directly, through altered litter quality or quantity, and indirectly through altered canopy structure. To assess the direct and indirect impacts of shrubs on decomposition, we quantified changes in mass, nitrogen, and carbon in litterbags deployed under mesquite canopies and in intercanopy zones. Litterbags contained foliage from mesquite and Lehmann lovegrass (Eragrostis lehmanniana), a widespread, nonnative grass in southern Arizona. To explore short‐ and long‐term influences of brush management on the initial stages of decomposition, litterbags were deployed at sites where mesquite canopies were removed three weeks, 45 years, or 70 years prior to study initiation.Mesquite litter decomposed more rapidly than lovegrass, but negative indirect influences of mesquite canopies counteracted positive direct effects. Decomposition was positively correlated with soil infiltration into litterbags, which varied with microsite placement, and was lowest under canopies. Low under‐canopy decomposition was ostensibly due to decreased soil movement associated with high under‐canopy herbaceous biomass. Decomposition rates where canopies were removed three weeks prior to study initiation were comparable to those beneath intact canopies, suggesting that decomposition was driven by mesquite legacy effects on herbaceous cover‐soil movement linkages. Decomposition rates where shrubs were removed 45 and 70 years prior to study initiation were comparable to intercanopy rates, suggesting that legacy effects persist less than 45 years.Accurate decomposition modeling has proved challenging in arid and semiarid systems but is critical to understanding biogeochemical responses to woody encroachment and brush management. Predicting brush‐management effects on decomposition will require information on shrub–grass interactions and herbaceous biomass influences on soil movement at decadal timescales. Inclusion of microsite factors controlling soil accumulation on litter would improve the predictive capability of decomposition models.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-0889.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-0889.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Idaho Research Infrastruc..., NSF | CAREER: Soil organic carb...NSF| Idaho Research Infrastructure Improvement: Water Resources in a Changing Climate ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyAuthors: de Graaff, Marie-Anne; Throop, Heather L.; Verburg, Paul S.J.; Arnone, John A., III; +1 Authorsde Graaff, Marie-Anne; Throop, Heather L.; Verburg, Paul S.J.; Arnone, John A., III; Campos, Xochi;Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.
Ecosystems arrow_drop_down ScholarWorks Boise State UniversityArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-014-9764-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecosystems arrow_drop_down ScholarWorks Boise State UniversityArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-014-9764-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Brooke B. Osborne; Brandon T. Bestelmeyer; Courtney M. Currier; Peter M. Homyak; +3 AuthorsBrooke B. Osborne; Brandon T. Bestelmeyer; Courtney M. Currier; Peter M. Homyak; Heather L. Throop; Kristina Young; Sasha C. Reed;doi: 10.1111/nph.18312
pmid: 35706381
SummaryDrylands, which cover > 40% of Earth's terrestrial surface, are dominant drivers of global biogeochemical cycling and home to more than one third of the global human population. Climate projections predict warming, drought frequency and severity, and evaporative demand will increase in drylands at faster rates than global means. As a consequence of extreme temperatures and high biological dependency on limited water availability, drylands are predicted to be exceptionally sensitive to climate change and, indeed, significant climate impacts are already being observed. However, our understanding and ability to forecast climate change effects on dryland biogeochemistry and ecosystem functions lag behind many mesic systems. To improve our capacity to forecast ecosystem change, we propose focusing on the controls and consequences of two key characteristics affecting dryland biogeochemistry: (1) high spatial and temporal heterogeneity in environmental conditions and (2) generalized resource scarcity. In addition to climate change, drylands are experiencing accelerating land‐use change. Building our understanding of dryland biogeochemistry in both intact and disturbed systems will better equip us to address the interacting effects of climate change and landscape degradation. Responding to these challenges will require a diverse, globally distributed and interdisciplinary community of dryland experts united towards better understanding these vast and important ecosystems.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Netherlands, Belgium, SpainPublisher:Springer Science and Business Media LLC José M. Grünzweig; Hans J. De Boeck; Ana Rey; Maria J. Santos; Ori Adam; Michael Bahn; Jayne Belnap; Gaby Deckmyn; Stefan C. Dekker; Omar Flores; Daniel Gliksman; David Helman; Kevin R. Hultine; Lingli Liu; Ehud Meron; Yaron Michael; Efrat Sheffer; Heather L. Throop; Omer Tzuk; Dan Yakir;Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01779-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Portugal, Spain, France, France, Italy, France, Portugal, South Africa, France, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERT, FCT | CEECIND/02453/2018/CP1534/CT0001EC| BIODESERT ,FCT| CEECIND/02453/2018/CP1534/CT0001Authors: Díaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; +123 AuthorsDíaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; Eldridge, David; Saiz, Hugo; Gross, Nicolas; Le Bagousse-Pinguet, Yoann; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Asensio, Sergio; Berdugo, Miguel; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gil, Juan; Zaccone, Claudio; Panettieri, Marco; García-Palacios, Pablo; Fan, Wei; Benavente-Ferraces, Iria; Rey, Ana; Eisenhauer, Nico; Cesarz, Simone; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Aramayo, Valeria; Arroyo, Antonio; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Branquinho, Cristina; Bu, Chongfeng; Cáceres, Yonatan; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Dickman, Christopher; Donoso, David; Dougill, Andrew; Durán, Jorge; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gusman Montalván, Elizabeth; Hernández-Hernández, Rosa; von Hessberg, Andreas; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Geissler, Katja; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Koopman, Jessica; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Mazaneda, Antonio; Mcclaran, Mitchel; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Osborne, Brooke; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Reyes, Victor; Rodríguez, Alexandra; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Julius; Sloan, Michael; Solongo, Shijirbaatar; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valko, Orsolya; van den Brink, Liesbeth; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zeberio, Juan; Zhang, Yuanming; Zhou, Xiaobing; Plaza, César;handle: 10261/364882 , 11562/1132966 , 20.500.14352/114759 , 2263/98010
This research was funded by the European Research Council (ERC Grant agreement 647038, BIODESERT), the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00) and Generalitat Valenciana (CIDEGENT/2018/041), with additional support by the University of Alicante (UADIF22-74 and VIGROB22-350). F.T.M. acknowledges support from the King Abdullah University of Science and Technology (KAUST) and the KAUST Climate and Livability Initiative. D.J.E. is supported by the Hermon Slade Foundation. H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. L.W. acknowledges support from the US National Science Foundation (EAR 1554894). B.B. and S.S. were supported by the Taylor Family–Asia Foundation Endowed Chair in Ecology and Conservation Biology. M.B. acknowledges support from a Ramón y Cajal grant from the Spanish Ministry of Science (RYC2021-031797-I). A.L. and L.K. acknowledge support from the German Research Foundation, DFG (grant CRC TRR228) and German Federal Government for Science and Education, BMBF (grants 01LL1802C and 01LC1821A). L.K. acknowledges travel funds from the Hans Merensky Foundation. A.N. and C. Branquinho acknowledge support from FCT—Fundação para a Ciência e a Tecnologia (CEECIND/02453/2018/CP1534/CT0001, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), from AdaptForGrazing project (PRR-C05-i03-I-000035) and from LTsER Montado platform (LTER_EU_PT_001). S.C.R. was supported by NASA (NNH22OB92A) and is grateful to E. Geiger, A. Howell, R. Reibold, N. Melone and M. Starbuck for field support. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We thank the landowners for granting access to the sites and many people and their institutions for supporting our fieldwork activities: L. Eloff, J. J. Jordaan, E. Mudongo, V. Mokoka, B. Mokhou, T. Maphanga, D. Thompson (SAEON), A. S. K. Frank, R. Matjea, F. Hoffmann, C. Goebel, the University of Limpopo, South African Environmental Observation Network (SAEON), the South African Military and the Scientific Services Kruger National Park. Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil carbon and is assumed less sensitive to climate than particulate organic carbon (POC) due to protection by minerals. Despite its importance for long-term carbon storage, the response of MAOC to changing climates in drylands, which cover more than 40% of the global land area, remains unexplored. Here we assess topsoil organic carbon fractions across global drylands using a standardized field survey in 326 plots from 25 countries and 6 continents. We find that soil biogeochemistry explained the majority of variation in both MAOC and POC. Both carbon fractions decreased with increases in mean annual temperature and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our results suggest that ongoing climate warming and aridification may result in unforeseen carbon losses across global drylands, and that the protective role of minerals may not dampen these effects. 19 páginas total artículo.- 3 figuras.- 33 referencias y 4 figuras.- 2 tablas.- 68 referencias.- The online version contains supplementary material available and extended data is available for this paper at https://doi.org/10.1038/s41558-024-02087-y No
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 179visibility views 179 download downloads 459 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Jan 2025 Spain, France, United States, Portugal, United States, Portugal, Spain, Spain, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | EarthShape: Earth Surface..., EC | BIODESERT, DFG | Future Rural Africa: Futu... +1 projectsDFG| EarthShape: Earth Surface Shaping by Biota ,EC| BIODESERT ,DFG| Future Rural Africa: Future-making and social-ecological transformation ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyBiancari, Lucio; Aguiar, Martín; Eldridge, David; Oñatibia, Gastón; Le Bagousse-Pinguet, Yoann; Saiz, Hugo; Gross, Nicolas; Austin, Amy; Ochoa, Victoria; Gozalo, Beatriz; Asensio, Sergio; Guirado, Emilio; Valencia, Enrique; Berdugo, Miguel; Plaza, César; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gómez, Miguel; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Anadón, José; Aramayo, Valeria; Arredondo, Tulio; Bader, Maaike; Bahalkeh, Khadijeh; Salem, Farah Ben; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; Bu, Chongfeng; Byambatsogt, Batbold; Calvo, Dianela; Castillo Monroy, Andrea; Castro, Helena; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Donoso, David; Dougill, Andrew; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gherardi, Laureano; Gusmán-Montalván, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Köbel, Melanie; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Oliva, Gabriel; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Rey, Pedro; Rodríguez, Alexandra; Rodríguez, Laura; Rolo, Víctor; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; van den Brink, Liesbeth; Wagner, Viktoria; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wolff, Peter; Yahdjian, Laura; Zaady, Eli; Maestre, Fernando;handle: 10261/373769 , 10045/147812 , 1805/44453
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 79visibility views 79 download downloads 77 Powered bymore_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Wiley Authors: Heather L. Throop; Steven R. Archer;doi: 10.1890/06-0889.1
pmid: 17913142
Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush management on leaf litter decomposition in a semidesert grassland where velvet mesquite (Prosopis velutina) abundance has increased over the past 100 years. This change in physiognomy may affect decomposition directly, through altered litter quality or quantity, and indirectly through altered canopy structure. To assess the direct and indirect impacts of shrubs on decomposition, we quantified changes in mass, nitrogen, and carbon in litterbags deployed under mesquite canopies and in intercanopy zones. Litterbags contained foliage from mesquite and Lehmann lovegrass (Eragrostis lehmanniana), a widespread, nonnative grass in southern Arizona. To explore short‐ and long‐term influences of brush management on the initial stages of decomposition, litterbags were deployed at sites where mesquite canopies were removed three weeks, 45 years, or 70 years prior to study initiation.Mesquite litter decomposed more rapidly than lovegrass, but negative indirect influences of mesquite canopies counteracted positive direct effects. Decomposition was positively correlated with soil infiltration into litterbags, which varied with microsite placement, and was lowest under canopies. Low under‐canopy decomposition was ostensibly due to decreased soil movement associated with high under‐canopy herbaceous biomass. Decomposition rates where canopies were removed three weeks prior to study initiation were comparable to those beneath intact canopies, suggesting that decomposition was driven by mesquite legacy effects on herbaceous cover‐soil movement linkages. Decomposition rates where shrubs were removed 45 and 70 years prior to study initiation were comparable to intercanopy rates, suggesting that legacy effects persist less than 45 years.Accurate decomposition modeling has proved challenging in arid and semiarid systems but is critical to understanding biogeochemical responses to woody encroachment and brush management. Predicting brush‐management effects on decomposition will require information on shrub–grass interactions and herbaceous biomass influences on soil movement at decadal timescales. Inclusion of microsite factors controlling soil accumulation on litter would improve the predictive capability of decomposition models.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-0889.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-0889.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Idaho Research Infrastruc..., NSF | CAREER: Soil organic carb...NSF| Idaho Research Infrastructure Improvement: Water Resources in a Changing Climate ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyAuthors: de Graaff, Marie-Anne; Throop, Heather L.; Verburg, Paul S.J.; Arnone, John A., III; +1 Authorsde Graaff, Marie-Anne; Throop, Heather L.; Verburg, Paul S.J.; Arnone, John A., III; Campos, Xochi;Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.
Ecosystems arrow_drop_down ScholarWorks Boise State UniversityArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-014-9764-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecosystems arrow_drop_down ScholarWorks Boise State UniversityArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10021-014-9764-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Brooke B. Osborne; Brandon T. Bestelmeyer; Courtney M. Currier; Peter M. Homyak; +3 AuthorsBrooke B. Osborne; Brandon T. Bestelmeyer; Courtney M. Currier; Peter M. Homyak; Heather L. Throop; Kristina Young; Sasha C. Reed;doi: 10.1111/nph.18312
pmid: 35706381
SummaryDrylands, which cover > 40% of Earth's terrestrial surface, are dominant drivers of global biogeochemical cycling and home to more than one third of the global human population. Climate projections predict warming, drought frequency and severity, and evaporative demand will increase in drylands at faster rates than global means. As a consequence of extreme temperatures and high biological dependency on limited water availability, drylands are predicted to be exceptionally sensitive to climate change and, indeed, significant climate impacts are already being observed. However, our understanding and ability to forecast climate change effects on dryland biogeochemistry and ecosystem functions lag behind many mesic systems. To improve our capacity to forecast ecosystem change, we propose focusing on the controls and consequences of two key characteristics affecting dryland biogeochemistry: (1) high spatial and temporal heterogeneity in environmental conditions and (2) generalized resource scarcity. In addition to climate change, drylands are experiencing accelerating land‐use change. Building our understanding of dryland biogeochemistry in both intact and disturbed systems will better equip us to address the interacting effects of climate change and landscape degradation. Responding to these challenges will require a diverse, globally distributed and interdisciplinary community of dryland experts united towards better understanding these vast and important ecosystems.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu