- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United Kingdom, Australia, Australia, France, Australia, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United Kingdom, Australia, Australia, France, Australia, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu