- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2011 SpainPublisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGAuthors: Vilarrasa Riaño, Víctor; Olivella Pastallé, Sebastià; Carrera Ramírez, Jesús;handle: 10261/43241 , 10261/42099 , 2117/15846
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as a mitigation strategy for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure buildup. The resulting overpressure will produce changes in the effective stress field. This will deform the rock and may promote reactivation of sealed fractures or the creation of new ones in the caprock seal, which could lead to escape paths for CO2. To understand these coupled hydromechanical phenomena, we model an axisymmetric horizontal aquifer-caprock system. We study plastic strain propagation patterns using a viscoplastic approach. Simulations illustrate that plastic strain may propagate through the whole thickness of the caprock if horizontal stress is lower than vertical stress. In contrast, plastic strain concentrates in the contact between the aquifer and the caprock if horizontal stress is larger than vertical stress. Aquifers that present a low-permeability boundary experience an additional fluid pressure increase once the pressure buildup cone reaches the outer boundary. However, fluid pressure does not evolve uniformly in the aquifer. While it increases in the low-permeability boundary, it drops in the vicinity of the injection well because of the lower viscosity of CO2. Thus, caprock stability does not get worse in semi-closed aquifers compared to open aquifers. Overall, the caprock acts as a plate that bends because of pressure buildup, producing a horizontal extension of the upper part of the caprock. This implies a vertical compression of this zone, which may produce settlements instead of uplift in low-permeability (k≤10-18 m2) caprocks at early times of injection. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011Full-Text: http://hdl.handle.net/2117/15846Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2011Data sources: UPCommons. Portal del coneixement obert de la UPChttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 107visibility views 107 download downloads 163 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011Full-Text: http://hdl.handle.net/2117/15846Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2011Data sources: UPCommons. Portal del coneixement obert de la UPChttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | MUSTANG, EC | PANACEAEC| MUSTANG ,EC| PANACEAAuthors: Jesús Carrera; Víctor Vilarrasa; Víctor Vilarrasa; Sebastià Olivella;handle: 10261/92978
Clear understanding of coupled hydromechanical effects, such as ground deformation, induced microseismicity and fault reactivation, will be crucial to convince the public that geologic carbon storage is secure. These effects depend on hydromechanical properties, which are usually determined at metric scale. However, their value at the field scale may differ in orders of magnitude. To address this shortcoming, we propose a hydromechanical characterization test to estimate the hydromechanical properties of the aquifer and caprock at the field scale. We propose injecting water at high pressure and, possibly, low temperature while monitoring fluid pressure and rock deformation. Here, we analyze the problem and perform numerical simulations and a dimensional analysis of the hydromechanical equations to obtain curves for overpressure and vertical displacement as a function of the volumetric strain term. We find that these curves do not depend much on the Poisson ratio, except for the dimensionless vertical displacement at the top of the caprock, which does. We can then estimate the values of the Young's modulus and the Poisson ratio of the aquifer and the caprock by introducing field measurements in these plots. Hydraulic parameters can be determined from the interpretation of fluid pressure evolution in the aquifer. Reverse-water level fluctuations are observed, i.e. fluid pressure drops in the caprock as a result of the induced deformation that undergoes the aquifer-caprock system when injecting in the aquifer. We find that induced microseismicity is more likely to occur in the aquifer than in the caprock and depends little on their stiffness. Monitoring microseismicity is a useful tool to track the opening of fractures. The propagation pattern depends on the stress regime, i.e. normal, strike slip or reverse faulting. The onset of microseismicity in the caprock can be used to define the maximum sustainable injection pressure to ensure a permanent CO2 storage. This work has been funded by Fundación Ciudad de la Energía (Spanish Government) (www.ciuden.es) through the project ALM/09/018 and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. We also want to acknowledge the financial support received from the ‘MUSTANG’ (www.co2mustang.eu) and ‘PANACEA’ (www.panacea-co2.org) projects (from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreements n° 227286 and n° 282900, respectively). Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 145 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, Spain, FrancePublisher:MDPI AG Authors: Soler Sagarra, Joaquim; Hakoun, Vivien; Dentz, Marco; Carrera, Jesús;doi: 10.3390/en14206562
handle: 10261/253917 , 2117/363519
Finding a numerical method to model solute transport in porous media with high heterogeneity is crucial, especially when chemical reactions are involved. The phase space formulation termed the multi-advective water mixing approach (MAWMA) was proposed to address this issue. The water parcel method (WP) may be obtained by discretizing MAWMA in space, time, and velocity. WP needs two transition matrices of velocity to reproduce advection (Markovian in space) and mixing (Markovian in time), separately. The matrices express the transition probability of water instead of individual solute concentration. This entails a change in concept, since the entire transport phenomenon is defined by the water phase. Concentration is reduced to a chemical attribute. The water transition matrix is obtained and is demonstrated to be constant in time. Moreover, the WP method is compared with the classic random walk method (RW) in a high heterogeneous domain. Results show that the WP adequately reproduces advection and dispersion, but overestimates mixing because mixing is a sub-velocity phase process. The WP method must, therefore, be extended to take into account incomplete mixing within velocity classes.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6562/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/1996-1073/14/20/6562Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 73 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6562/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/1996-1073/14/20/6562Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Spain, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PANACEAEC| PANACEAAuthors: Jesús Carrera; Víctor Vilarrasa; Víctor Vilarrasa;SignificanceGeologic carbon storage remains a safe option to mitigate anthropogenic climate change. Properly sited and managed storage sites are unlikely to induce felt seismicity because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2will dissolve into brine at a significant rate, reducing overpressure; and (iv) CO2will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. Furthermore, CO2leakage through fault reactivation is unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along localized deformation zones.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413284112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 445 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413284112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Sweden, SpainPublisher:Elsevier BV Funded by:EC | TRUSTEC| TRUSTLurdes Martinez-Landa; Lurdes Martinez-Landa; Jesús Carrera; Jacob Bensabat; Auli Niemi;handle: 10261/257570
Estimation of trapped CO2 is essential for assessing the potential of a site for geological carbon storage. In situ residual trapping can be obtained through Residual Trapping Experiments (RTE). RTE experiments consist in performing characterization tests e.g. hydraulic, thermal and tracer tests before and after creating the residually trapped zone of CO2 and estimating residual saturation from the differences between the two tests. We introduce a methodology for interpreting residual drawdowns from hydraulic tests, and specifically those performed before and after the creation of the residually trapped zone. Martinez-Landa et al. (2013) demonstrated that the reduction of hydraulic conductivity and the increase in storativity within the trapped CO2 zone can produce early time differences that are significant. However, our interpretation is hindered by the fact that accurate measurement of early time (a few minutes) response is difficult because the large inertia of the system prevents us from rapidly establishing a controlled constant flow-rate. This is particularly true for the RTE test at Heletz, where water withdrawal during the hydraulic tests had to be performed by air-lift. To resolve this difficulty, we use the proposed methodology which avoids instabilities derived from changes in flow rates. Our approach consists of four steps: (1) filtering of natural trends in heads to ensure good definition of drawdowns; (2) transformation of residual drawdowns into constant pumping test drawdowns, by using the Agarwal or other methods, while accounting for flow rate variations during the pumping phase; (3) computation of smooth log-derivatives to prepare diagnostic plots to aid in conceptual model identification; and (4) quantitative interpretation. The application of our approach to the Heletz RTE experiment gave rise to diagnostic plots consistent with theoretical expectations and a residual CO2 saturation of about 10%. This work has been funded by EU project TRUST, grant agreement number 309067, and by and the Spanish project MEDISTRAES (CGL2013-48869 and CGL2016-77122) . Peer reviewed
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 95 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2021 SpainPublisher:MDPI AG Authors: Carrera Ramírez, Jesús; Saaltink, Maarten Willem; Soler Sagarra, Joaquim; Wang, Jingjing; +1 AuthorsCarrera Ramírez, Jesús; Saaltink, Maarten Willem; Soler Sagarra, Joaquim; Wang, Jingjing; Valhondo González, Cristina;handle: 10261/262213 , 2117/382619
Reactive transport (RT) couples bio-geo-chemical reactions and transport. RT is important to understand numerous scientific questions and solve some engineering problems. RT is highly multidisciplinary, which hinders the development of a body of knowledge shared by RT modelers and developers. The goal of this paper is to review the basic conceptual issues shared by all RT problems, so as to facilitate advance along the current frontier: biochemical reactions. To this end, we review the basic equations to point that chemical systems are controlled by the set of equilibrium reactions, which are easy to model, but whose rate is controlled by mixing. Since mixing is not properly represented by the standard advection-dispersion equation (ADE), we conclude that this equation is poor for RT. This leads us to review alternative transport formulations, and the methods to solve RT problems using both the ADE and alternative equations. Since equilibrium is easy, difficulties arise for kinetic reactions, which is especially true for biochemistry, where numerous frontiers are open (how to represent microbial communities, impact of genomics, effect of biofilms on flow and transport, etc.). We conclude with the basic 10 issues that we consider fundamental for any conceptually sound RT effort.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/925Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202111.0482.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 107visibility views 107 download downloads 507 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/925Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202111.0482.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Elsevier BV Authors: Jesús Carrera; Juan J. Hidalgo; Marco Dentz; Marco Dentz;handle: 10261/346619
Heat is transported in aquifers by advection and conduction. Spatial variability of hydraulic conductivity causes fluctuations in small scale advection, whose effect can be represented by a dispersion term. However, the use of this term is still subject to controversy among modelers. The effect of heterogeneity on the heat plume generated by a groundwater heat exchanger (GHE) in a three-dimensional aquifer under steady state conditions is examined. Transverse dispersion is estimated using a stochastic approach in which a distinction between effective and ensemble dispersion coefficients is made. The former quantifies the typical width of the heat plume and the latter takes into account the uncertainty of the lateral plume position. Simulations show that transverse dispersion is proportional to the variance and correlation length of the log-conductivity field. On the one hand, the ensemble transverse dispersion coefficient, which can be used for risk analysis to find the mean temperature and the potential plume spread, is high near the heat source and then decreases. On the other hand, the effective transverse dispersion coefficient, the one required to simulate actual temperature values and plume width, displays a less marked dependence on the distance from the source. For modeling purposes it can be approximated as αT ≈ 0.02 σln K2 Lx, where σln K2 is the variance of the log-conductivity field and Lx its correlation length in the mean flow direction. However, a zero dispersion should be used to compute the energy dissipated by the GHE. © 2009 Elsevier Ltd. All rights reserved. This work was performed with funding provided by EU projects FUNMIG (ref. 516514), MUSTANG (ref. 227286) and CICYT project MODEST (ref. CGL2005-05171). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAdvances in Water ResourcesArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAdvances in Water ResourcesArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Spain, SwedenPublisher:Elsevier BV Funded by:EC | TRUST, EC | CO2QUEST, EC | MUSTANG +1 projectsEC| TRUST ,EC| CO2QUEST ,EC| MUSTANG ,EC| PANACEAAuthors: Niemi, Auli; Carrera, Jesus; Gouze, Philippe; Tsang, Chin-Fu;handle: 10261/307109
Residual or capillary trapping is one of the key trapping mechanisms for geological storage of CO2 (Burnside and Naylor, 2014; Juanes et al., 2006). Yet, very few studies so far have attempted to evaluate residual trapping and the related characteristic parameters, in situ. To meet this challenge, two single-well experiments were carried out at Heletz, Israel pilot CO2 injection site with the objective to quantify CO2 residual trapping. The experiments were performed in 2016–2017 in a saline reservoir at 1.6 km depth as part of EU project TRUST, with extensive preparatory work being carried out in preceding EU projects MUSTANG, PANACEA and CO2QUEST (e.g. Niemi et al., 2016a). This Special Section of articles summarizes the main findings of these experiments and insights obtained on residual trapping of CO2 in deep saline aquifers. We as guest editors to this special section would like to, also on behalf of the authors, especially acknowledge the role of EU FP7 projects TRUST (grant number 309067), PANACEA (grant number 282900), MUSTANG (grant number 227286) and CO2QUEST (grant number 309102) for the financial support that has enabled the work. We would also like to express our special thanks to Editor Sean McCoy from International Journal of Greenhouse Gas Control for all his help and support during the preparation of this Special Section. Peer reviewed
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2022Data sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 63 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2022Data sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | PANACEA, EC | MUSTANGEC| PANACEA ,EC| MUSTANGRötting, Tobias; Carrera, Jesús; Vilarrasa, Víctor; Silva, Orlando; Olivella, Sebastià;handle: 10261/93784 , 10261/74308
Póster presentado en la 7th Trondheim Conference on CO2 Capture, Transport and Storage, celebrada en Trondheim (Noruega) del 4 al 6 de junio de 2013. It is usually assumed that CO2 for geological storage should be injected in supercritical (SC) state (i.e. p>7.382 MPa and T>31.04 ºC) to avoid thermal stresses or phase changes in the injection tubing or in the formation. Injecting CO2 in liquid phase would be desirable because its density is much larger than that of either gaseous or supercritical CO2. Since most of the wellhead pressure is required for overcoming buoyancy forces in the wellbore, increasing density in the wellbore translates into a parallel reduction of the required wellhead pressure. Yet, most projects contemplate injection in either SC or gaseous phase because of concerns about (1) phase changes in the wellbore, or (2) thermal stresses in the reservoir caused by the injection of CO2 much colder than the reservoir. We perform numerical simulations to analyze the thermodynamic evolution of CO2 and the thermo-hydro-mechanical response of the formation and the caprock to liquid CO2 injection. We find that injecting CO2 in liquid state is energetically more efficient than in SC state because liquid CO2 is denser than SC CO2, leading to a lower overpressure not only at the wellhead, but also in the reservoir because a smaller fluid volume is displaced. Cold CO2 injection cools down the formation around the injection well. Further away, CO2 equilibrates thermally with the medium in an abrupt front. A slight temperature increase occurs in the SC CO2 region that is due to the exothermal dissolution of CO2 into the brine. The liquid CO2 region close to the injection well advances far behind the SC CO2 interface. While the SC CO2 region is dominated by gravity override, the liquid CO2 region displays a steeper front because viscous forces dominate (liquid CO2 is not only denser, but also more viscous than SC CO2). The temperature decrease close to the injection well induces a stress reduction due to thermal contraction of the media. This can lead to shear slip of pre-existing fractures in the aquifer for large temperature contrasts in stiff rocks, which could enhance injectivity. In contrast, the mobilized friction angle in the seals is not increased when injecting liquid CO2 and it is even reduced in stress regimes where the maximum principal stress is the vertical. We conclude that injecting CO2 in liquid state rather than SC is favourable for several reasons: (1) this injection strategy is energetically advantageous, (2) no transformation operation or only low energy consumption conditioning operations are necessary, (3) a smaller compression work at the wellhead is necessary because of the smaller compressibility of liquid CO2, (4) since liquid CO2 is denser than SC CO2, liquid CO2 injection induces a lower overpressure also at within the aquifer because a smaller amount of fluid is displaced and (5) the caprock mechanical stability is improved. Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 233 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | MUSTANG, EC | PANACEAEC| MUSTANG ,EC| PANACEALurdes Martinez-Landa; Bruno Cubillo; Anna Russian; Marco Dentz; Jesús Carrera; Tobias S. Rötting; Tobias S. Rötting;handle: 10261/92998 , 2117/22669
Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, we present a methodology to interpret these tests and analyze which parameters can be estimated. We use numerical and analytical solutions to a continuous injection in a medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storage coefficient over a finite thickness (a few meters) skin around the injection well. We interpret the model results using conventional pressure buildup and diagnostic plots as well as the Agarwal (1980) recovery plots. We find that both skin hydraulic conductivity and storage coefficient (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head buildup is measured with high frequency at the beginning of the test. © 2013 Elsevier Ltd. This work has been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. We also want to acknowledge the financial support received from the ‘MUSTANG’ project (from the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreement no. 227286; www.co2mustang.eu). Peer Reviewed
Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2013Data sources: UPCommons. Portal del coneixement obert de la UPCInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 74visibility views 74 download downloads 35 Powered bymore_vert Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2013Data sources: UPCommons. Portal del coneixement obert de la UPCInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2011 SpainPublisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGAuthors: Vilarrasa Riaño, Víctor; Olivella Pastallé, Sebastià; Carrera Ramírez, Jesús;handle: 10261/43241 , 10261/42099 , 2117/15846
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as a mitigation strategy for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure buildup. The resulting overpressure will produce changes in the effective stress field. This will deform the rock and may promote reactivation of sealed fractures or the creation of new ones in the caprock seal, which could lead to escape paths for CO2. To understand these coupled hydromechanical phenomena, we model an axisymmetric horizontal aquifer-caprock system. We study plastic strain propagation patterns using a viscoplastic approach. Simulations illustrate that plastic strain may propagate through the whole thickness of the caprock if horizontal stress is lower than vertical stress. In contrast, plastic strain concentrates in the contact between the aquifer and the caprock if horizontal stress is larger than vertical stress. Aquifers that present a low-permeability boundary experience an additional fluid pressure increase once the pressure buildup cone reaches the outer boundary. However, fluid pressure does not evolve uniformly in the aquifer. While it increases in the low-permeability boundary, it drops in the vicinity of the injection well because of the lower viscosity of CO2. Thus, caprock stability does not get worse in semi-closed aquifers compared to open aquifers. Overall, the caprock acts as a plate that bends because of pressure buildup, producing a horizontal extension of the upper part of the caprock. This implies a vertical compression of this zone, which may produce settlements instead of uplift in low-permeability (k≤10-18 m2) caprocks at early times of injection. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011Full-Text: http://hdl.handle.net/2117/15846Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2011Data sources: UPCommons. Portal del coneixement obert de la UPChttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 107visibility views 107 download downloads 163 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011Full-Text: http://hdl.handle.net/2117/15846Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2011Data sources: UPCommons. Portal del coneixement obert de la UPChttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | MUSTANG, EC | PANACEAEC| MUSTANG ,EC| PANACEAAuthors: Jesús Carrera; Víctor Vilarrasa; Víctor Vilarrasa; Sebastià Olivella;handle: 10261/92978
Clear understanding of coupled hydromechanical effects, such as ground deformation, induced microseismicity and fault reactivation, will be crucial to convince the public that geologic carbon storage is secure. These effects depend on hydromechanical properties, which are usually determined at metric scale. However, their value at the field scale may differ in orders of magnitude. To address this shortcoming, we propose a hydromechanical characterization test to estimate the hydromechanical properties of the aquifer and caprock at the field scale. We propose injecting water at high pressure and, possibly, low temperature while monitoring fluid pressure and rock deformation. Here, we analyze the problem and perform numerical simulations and a dimensional analysis of the hydromechanical equations to obtain curves for overpressure and vertical displacement as a function of the volumetric strain term. We find that these curves do not depend much on the Poisson ratio, except for the dimensionless vertical displacement at the top of the caprock, which does. We can then estimate the values of the Young's modulus and the Poisson ratio of the aquifer and the caprock by introducing field measurements in these plots. Hydraulic parameters can be determined from the interpretation of fluid pressure evolution in the aquifer. Reverse-water level fluctuations are observed, i.e. fluid pressure drops in the caprock as a result of the induced deformation that undergoes the aquifer-caprock system when injecting in the aquifer. We find that induced microseismicity is more likely to occur in the aquifer than in the caprock and depends little on their stiffness. Monitoring microseismicity is a useful tool to track the opening of fractures. The propagation pattern depends on the stress regime, i.e. normal, strike slip or reverse faulting. The onset of microseismicity in the caprock can be used to define the maximum sustainable injection pressure to ensure a permanent CO2 storage. This work has been funded by Fundación Ciudad de la Energía (Spanish Government) (www.ciuden.es) through the project ALM/09/018 and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. We also want to acknowledge the financial support received from the ‘MUSTANG’ (www.co2mustang.eu) and ‘PANACEA’ (www.panacea-co2.org) projects (from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreements n° 227286 and n° 282900, respectively). Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 145 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, Spain, FrancePublisher:MDPI AG Authors: Soler Sagarra, Joaquim; Hakoun, Vivien; Dentz, Marco; Carrera, Jesús;doi: 10.3390/en14206562
handle: 10261/253917 , 2117/363519
Finding a numerical method to model solute transport in porous media with high heterogeneity is crucial, especially when chemical reactions are involved. The phase space formulation termed the multi-advective water mixing approach (MAWMA) was proposed to address this issue. The water parcel method (WP) may be obtained by discretizing MAWMA in space, time, and velocity. WP needs two transition matrices of velocity to reproduce advection (Markovian in space) and mixing (Markovian in time), separately. The matrices express the transition probability of water instead of individual solute concentration. This entails a change in concept, since the entire transport phenomenon is defined by the water phase. Concentration is reduced to a chemical attribute. The water transition matrix is obtained and is demonstrated to be constant in time. Moreover, the WP method is compared with the classic random walk method (RW) in a high heterogeneous domain. Results show that the WP adequately reproduces advection and dispersion, but overestimates mixing because mixing is a sub-velocity phase process. The WP method must, therefore, be extended to take into account incomplete mixing within velocity classes.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6562/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/1996-1073/14/20/6562Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 73 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/20/6562/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDFull-Text: https://www.mdpi.com/1996-1073/14/20/6562Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://brgm.hal.science/hal-03383273Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Spain, SwitzerlandPublisher:Proceedings of the National Academy of Sciences Funded by:EC | PANACEAEC| PANACEAAuthors: Jesús Carrera; Víctor Vilarrasa; Víctor Vilarrasa;SignificanceGeologic carbon storage remains a safe option to mitigate anthropogenic climate change. Properly sited and managed storage sites are unlikely to induce felt seismicity because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2will dissolve into brine at a significant rate, reducing overpressure; and (iv) CO2will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. Furthermore, CO2leakage through fault reactivation is unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along localized deformation zones.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413284112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 445 Powered bymore_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413284112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Sweden, SpainPublisher:Elsevier BV Funded by:EC | TRUSTEC| TRUSTLurdes Martinez-Landa; Lurdes Martinez-Landa; Jesús Carrera; Jacob Bensabat; Auli Niemi;handle: 10261/257570
Estimation of trapped CO2 is essential for assessing the potential of a site for geological carbon storage. In situ residual trapping can be obtained through Residual Trapping Experiments (RTE). RTE experiments consist in performing characterization tests e.g. hydraulic, thermal and tracer tests before and after creating the residually trapped zone of CO2 and estimating residual saturation from the differences between the two tests. We introduce a methodology for interpreting residual drawdowns from hydraulic tests, and specifically those performed before and after the creation of the residually trapped zone. Martinez-Landa et al. (2013) demonstrated that the reduction of hydraulic conductivity and the increase in storativity within the trapped CO2 zone can produce early time differences that are significant. However, our interpretation is hindered by the fact that accurate measurement of early time (a few minutes) response is difficult because the large inertia of the system prevents us from rapidly establishing a controlled constant flow-rate. This is particularly true for the RTE test at Heletz, where water withdrawal during the hydraulic tests had to be performed by air-lift. To resolve this difficulty, we use the proposed methodology which avoids instabilities derived from changes in flow rates. Our approach consists of four steps: (1) filtering of natural trends in heads to ensure good definition of drawdowns; (2) transformation of residual drawdowns into constant pumping test drawdowns, by using the Agarwal or other methods, while accounting for flow rate variations during the pumping phase; (3) computation of smooth log-derivatives to prepare diagnostic plots to aid in conceptual model identification; and (4) quantitative interpretation. The application of our approach to the Heletz RTE experiment gave rise to diagnostic plots consistent with theoretical expectations and a residual CO2 saturation of about 10%. This work has been funded by EU project TRUST, grant agreement number 309067, and by and the Spanish project MEDISTRAES (CGL2013-48869 and CGL2016-77122) . Peer reviewed
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 95 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2021 SpainPublisher:MDPI AG Authors: Carrera Ramírez, Jesús; Saaltink, Maarten Willem; Soler Sagarra, Joaquim; Wang, Jingjing; +1 AuthorsCarrera Ramírez, Jesús; Saaltink, Maarten Willem; Soler Sagarra, Joaquim; Wang, Jingjing; Valhondo González, Cristina;handle: 10261/262213 , 2117/382619
Reactive transport (RT) couples bio-geo-chemical reactions and transport. RT is important to understand numerous scientific questions and solve some engineering problems. RT is highly multidisciplinary, which hinders the development of a body of knowledge shared by RT modelers and developers. The goal of this paper is to review the basic conceptual issues shared by all RT problems, so as to facilitate advance along the current frontier: biochemical reactions. To this end, we review the basic equations to point that chemical systems are controlled by the set of equilibrium reactions, which are easy to model, but whose rate is controlled by mixing. Since mixing is not properly represented by the standard advection-dispersion equation (ADE), we conclude that this equation is poor for RT. This leads us to review alternative transport formulations, and the methods to solve RT problems using both the ADE and alternative equations. Since equilibrium is easy, difficulties arise for kinetic reactions, which is especially true for biochemistry, where numerous frontiers are open (how to represent microbial communities, impact of genomics, effect of biofilms on flow and transport, etc.). We conclude with the basic 10 issues that we consider fundamental for any conceptually sound RT effort.
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/925Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202111.0482.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 107visibility views 107 download downloads 507 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/925Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202111.0482.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Elsevier BV Authors: Jesús Carrera; Juan J. Hidalgo; Marco Dentz; Marco Dentz;handle: 10261/346619
Heat is transported in aquifers by advection and conduction. Spatial variability of hydraulic conductivity causes fluctuations in small scale advection, whose effect can be represented by a dispersion term. However, the use of this term is still subject to controversy among modelers. The effect of heterogeneity on the heat plume generated by a groundwater heat exchanger (GHE) in a three-dimensional aquifer under steady state conditions is examined. Transverse dispersion is estimated using a stochastic approach in which a distinction between effective and ensemble dispersion coefficients is made. The former quantifies the typical width of the heat plume and the latter takes into account the uncertainty of the lateral plume position. Simulations show that transverse dispersion is proportional to the variance and correlation length of the log-conductivity field. On the one hand, the ensemble transverse dispersion coefficient, which can be used for risk analysis to find the mean temperature and the potential plume spread, is high near the heat source and then decreases. On the other hand, the effective transverse dispersion coefficient, the one required to simulate actual temperature values and plume width, displays a less marked dependence on the distance from the source. For modeling purposes it can be approximated as αT ≈ 0.02 σln K2 Lx, where σln K2 is the variance of the log-conductivity field and Lx its correlation length in the mean flow direction. However, a zero dispersion should be used to compute the energy dissipated by the GHE. © 2009 Elsevier Ltd. All rights reserved. This work was performed with funding provided by EU projects FUNMIG (ref. 516514), MUSTANG (ref. 227286) and CICYT project MODEST (ref. CGL2005-05171). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAdvances in Water ResourcesArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 37 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2009 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAdvances in Water ResourcesArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Spain, SwedenPublisher:Elsevier BV Funded by:EC | TRUST, EC | CO2QUEST, EC | MUSTANG +1 projectsEC| TRUST ,EC| CO2QUEST ,EC| MUSTANG ,EC| PANACEAAuthors: Niemi, Auli; Carrera, Jesus; Gouze, Philippe; Tsang, Chin-Fu;handle: 10261/307109
Residual or capillary trapping is one of the key trapping mechanisms for geological storage of CO2 (Burnside and Naylor, 2014; Juanes et al., 2006). Yet, very few studies so far have attempted to evaluate residual trapping and the related characteristic parameters, in situ. To meet this challenge, two single-well experiments were carried out at Heletz, Israel pilot CO2 injection site with the objective to quantify CO2 residual trapping. The experiments were performed in 2016–2017 in a saline reservoir at 1.6 km depth as part of EU project TRUST, with extensive preparatory work being carried out in preceding EU projects MUSTANG, PANACEA and CO2QUEST (e.g. Niemi et al., 2016a). This Special Section of articles summarizes the main findings of these experiments and insights obtained on residual trapping of CO2 in deep saline aquifers. We as guest editors to this special section would like to, also on behalf of the authors, especially acknowledge the role of EU FP7 projects TRUST (grant number 309067), PANACEA (grant number 282900), MUSTANG (grant number 227286) and CO2QUEST (grant number 309102) for the financial support that has enabled the work. We would also like to express our special thanks to Editor Sean McCoy from International Journal of Greenhouse Gas Control for all his help and support during the preparation of this Special Section. Peer reviewed
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2022Data sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 63 Powered bymore_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationer från Uppsala UniversitetArticle . 2022Data sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103466&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | PANACEA, EC | MUSTANGEC| PANACEA ,EC| MUSTANGRötting, Tobias; Carrera, Jesús; Vilarrasa, Víctor; Silva, Orlando; Olivella, Sebastià;handle: 10261/93784 , 10261/74308
Póster presentado en la 7th Trondheim Conference on CO2 Capture, Transport and Storage, celebrada en Trondheim (Noruega) del 4 al 6 de junio de 2013. It is usually assumed that CO2 for geological storage should be injected in supercritical (SC) state (i.e. p>7.382 MPa and T>31.04 ºC) to avoid thermal stresses or phase changes in the injection tubing or in the formation. Injecting CO2 in liquid phase would be desirable because its density is much larger than that of either gaseous or supercritical CO2. Since most of the wellhead pressure is required for overcoming buoyancy forces in the wellbore, increasing density in the wellbore translates into a parallel reduction of the required wellhead pressure. Yet, most projects contemplate injection in either SC or gaseous phase because of concerns about (1) phase changes in the wellbore, or (2) thermal stresses in the reservoir caused by the injection of CO2 much colder than the reservoir. We perform numerical simulations to analyze the thermodynamic evolution of CO2 and the thermo-hydro-mechanical response of the formation and the caprock to liquid CO2 injection. We find that injecting CO2 in liquid state is energetically more efficient than in SC state because liquid CO2 is denser than SC CO2, leading to a lower overpressure not only at the wellhead, but also in the reservoir because a smaller fluid volume is displaced. Cold CO2 injection cools down the formation around the injection well. Further away, CO2 equilibrates thermally with the medium in an abrupt front. A slight temperature increase occurs in the SC CO2 region that is due to the exothermal dissolution of CO2 into the brine. The liquid CO2 region close to the injection well advances far behind the SC CO2 interface. While the SC CO2 region is dominated by gravity override, the liquid CO2 region displays a steeper front because viscous forces dominate (liquid CO2 is not only denser, but also more viscous than SC CO2). The temperature decrease close to the injection well induces a stress reduction due to thermal contraction of the media. This can lead to shear slip of pre-existing fractures in the aquifer for large temperature contrasts in stiff rocks, which could enhance injectivity. In contrast, the mobilized friction angle in the seals is not increased when injecting liquid CO2 and it is even reduced in stress regimes where the maximum principal stress is the vertical. We conclude that injecting CO2 in liquid state rather than SC is favourable for several reasons: (1) this injection strategy is energetically advantageous, (2) no transformation operation or only low energy consumption conditioning operations are necessary, (3) a smaller compression work at the wellhead is necessary because of the smaller compressibility of liquid CO2, (4) since liquid CO2 is denser than SC CO2, liquid CO2 injection induces a lower overpressure also at within the aquifer because a smaller amount of fluid is displaced and (5) the caprock mechanical stability is improved. Peer reviewed
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 233 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 SpainPublisher:Elsevier BV Funded by:EC | MUSTANG, EC | PANACEAEC| MUSTANG ,EC| PANACEALurdes Martinez-Landa; Bruno Cubillo; Anna Russian; Marco Dentz; Jesús Carrera; Tobias S. Rötting; Tobias S. Rötting;handle: 10261/92998 , 2117/22669
Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, we present a methodology to interpret these tests and analyze which parameters can be estimated. We use numerical and analytical solutions to a continuous injection in a medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storage coefficient over a finite thickness (a few meters) skin around the injection well. We interpret the model results using conventional pressure buildup and diagnostic plots as well as the Agarwal (1980) recovery plots. We find that both skin hydraulic conductivity and storage coefficient (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head buildup is measured with high frequency at the beginning of the test. © 2013 Elsevier Ltd. This work has been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme for Recovery” and the Compostilla OXYCFB300 project. We also want to acknowledge the financial support received from the ‘MUSTANG’ project (from the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreement no. 227286; www.co2mustang.eu). Peer Reviewed
Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2013Data sources: UPCommons. Portal del coneixement obert de la UPCInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 74visibility views 74 download downloads 35 Powered bymore_vert Universitat Politècn... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2013Data sources: UPCommons. Portal del coneixement obert de la UPCInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYInternational Journal of Greenhouse Gas ControlArticle . 2013 . Peer-reviewedData sources: Digital.CSIChttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2013.01.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu