- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2008 France, France, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Authors:Jean-Michel Harmand;
Jean-Michel Harmand
Jean-Michel Harmand in OpenAIREUte Skiba;
Kristell Hergoualc'h; Kristell Hergoualc'h; +2 AuthorsUte Skiba
Ute Skiba in OpenAIREJean-Michel Harmand;
Jean-Michel Harmand
Jean-Michel Harmand in OpenAIREUte Skiba;
Kristell Hergoualc'h; Kristell Hergoualc'h; Kristell Hergoualc'h;Ute Skiba
Ute Skiba in OpenAIRECatherine Hénault;
Catherine Hénault
Catherine Hénault in OpenAIREhandle: 10568/20707
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 France, France, France, France, France, United KingdomPublisher:Elsevier BV Authors:Jean-Michel Harmand;
Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; +2 AuthorsJean-Michel Harmand
Jean-Michel Harmand in OpenAIREJean-Michel Harmand;
Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart;Jean-Michel Harmand
Jean-Michel Harmand in OpenAIREUte Skiba;
Ute Skiba
Ute Skiba in OpenAIRECatherine Hénault;
Catherine Hénault
Catherine Hénault in OpenAIREhandle: 10568/95665
Agroforestry represents an opportunity to reduce CO2 concentrations in the atmosphere by increasing carbon (C) stocks in agricultural lands. Agroforestry practices may also promote mineral N fertilization and the use of N2-fixing legumes that favor the emission of non-CO2 greenhouse gases (GHG) (N2O and CH4). The present study evaluates the net GHG balance in two adjacent coffee plantations, both highly fertilized (250 kg N ha-1 year-1): a monoculture (CM) and a culture shaded by the N2-fixing legume tree species Inga densiflora (CIn). C stocks, soil N2O emissions and CH4 uptakes were measured during the first cycle of both plantations. During a 3-year period (6-9 years after the establishment of the systems), soil C in the upper 10 cm remained constant in the CIn plantation (+0.09 ± 0.58 Mg C ha-1 year-1) and decreased slightly but not significantly in the CM plantation (-0.43 ± 0.53 Mg C ha-1 year-1). Aboveground carbon stocks in the coffee monoculture and the agroforestry system amounted to 9.8 ± 0.4 and 25.2 ± 0.6 Mg C ha-1, respectively, at 7 years after establishment. C storage rate in the phytomass was more than twice as large in the CIn compared to the CM system (4.6 ± 0.1 and 2.0 ± 0.1 Mg C ha-1 year-1, respectively). Annual soil N2O emissions were 1.3 times larger in the CIn than in the CM plantation (5.8 ± 0.5 and 4.3 ± 0.3 kg N-N2O ha-1 year-1, respectively). The net GHG balance at the soil scale calculated from the changes in soil C stocks and N2O emissions, expressed in CO2 equivalent, was negative in both coffee plantations indicating that the soil was a net source of GHG. Nevertheless this balance was in favor of the agroforestry system. The net GHG balance at the plantation scale, which includes additionally C storage in the phytomass, was positive and about 4 times larger in the CIn (14.59 ± 2.20 Mg CO2 eq ha-1 year-1) than in the CM plantation (3.83 ± 1.98 Mg CO2 eq ha-1 year-1). Thus converting the coffee monoculture to the coffee agroforestry plantation shaded by the N2-fixing tree species I. densiflora would increase net atmospheric GHG removals by 10.76 ± 2.96 Mg CO2 eq ha-1 year-1 during the first cycle of 8-9 years.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Authors:Harmand, Jean-Michel;
Ávila, Hector; Dambrine, Etienne;Harmand, Jean-Michel
Harmand, Jean-Michel in OpenAIRESkiba, Ute;
+5 AuthorsSkiba, Ute
Skiba, Ute in OpenAIREHarmand, Jean-Michel;
Ávila, Hector; Dambrine, Etienne;Harmand, Jean-Michel
Harmand, Jean-Michel in OpenAIRESkiba, Ute;
Skiba, Ute
Skiba, Ute in OpenAIREde Miguel, Sergio;
Renderos, Reina Vanessa; Oliver, Robert;de Miguel, Sergio
de Miguel, Sergio in OpenAIREJiménez, Francisco;
Beer, John;Jiménez, Francisco
Jiménez, Francisco in OpenAIRENitrogen fertilization is a key factor for coffee production but creates a risk of water contamination through nitrate (NO 3 − ) leaching in heavily fertilized plantations under high rainfall. The inclusion of fast growing timber trees in these coffee plantations may increase total biomass and reduce nutrient leaching. Potential controls of N loss were measured in an unshaded coffee (Coffea arabica L.) plot and in an adjacent coffee plot shaded with the timber species Eucalyptus deglupta Blume (110 trees ha−1), established on an Acrisol that received 180 kg N ha−1 as ammonium-nitrate and 2,700 mm yr−1 rainfall. Results of the one year study showed that these trees had little effect on the N budget although some N fluxes were modified. Soil N mineralization and nitrification rates in the 0–20 cm soil layer were similar in both systems (≈280 kg N ha−1 yr−1). N export in coffee harvest (2002) was 34 and 25 kg N ha−1 yr−1 in unshaded and shaded coffee, and N accumulation in permanent biomass and litter was 25 and 45 kg N ha−1 yr−1, respectively. The losses in surface runoff (≈0.8 kg mineral N ha−1 yr−1) and N2O emissions (1.9 kg N ha−1 yr−1) were low in both cases. Lysimeters located at 60, 120, and 200 cm depths in shaded coffee, detected average concentrations of 12.9, 6.1 and 1.2 mg NO 3 − -N l−1, respectively. Drainage was slightly reduced in the coffee-timber plantation. NO 3 − leaching at 200 cm depth was about 27 ± 10 and 16 ± 7 kg N ha−1 yr−1 in unshaded and shaded coffee, respectively. In both plots, very low NO 3 − concentrations in soil solution at 200 cm depth (and in groundwater) were apparently due to NO 3 − adsorption in the subsoil but the duration of this process is not presently known. In these conventional coffee plantations, fertilization and agroforestry practices must be refined to match plant needs and limit potential NO 3 − contamination of subsoil and shallow soil water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-007-9120-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Authors: Marney E. Isaac; Marney E. Isaac;Jean-Michel Harmand;
Jean-Jacques Drevon;Jean-Michel Harmand
Jean-Michel Harmand in OpenAIREpmid: 21211863
There remains conflicting evidence on the relationship between P supply and biological N(2)-fixation rates, particularly N(2)-fixing plant adaptive strategies under P limitation. This is important, as edaphic conditions inherent to many economically and ecologically important semi-arid leguminous tree species, such as Acacia senegal, are P deficient. Our research objective was to verify N acquisition strategies under phosphorus limitations using isotopic techniques. Acacia senegal var. senegal was cultivated in sand culture with three levels of exponentially supplied phosphorus [low (200 μmol of P seedling(-1) over 12 weeks), mid (400 μmol) and high (600 μmol)] to achieve steady-state nutrition over the growth period. Uniform additions of N were also supplied. Plant growth and nutrition were evaluated. Seedlings exhibited significantly greater total biomass under high P supply compared to low P supply. Both P and N content significantly increased with increasing P supply. Similarly, N derived from solution increased with elevated P availability. However, both the number of nodules and the N derived from atmosphere, determined by the (15)N natural abundance method, did not increase along the P gradient. Phosphorus stimulated growth and increased mineral N uptake from solution without affecting the amount of N derived from the atmosphere. We conclude that, under non-limiting N conditions, A. senegal N acquisition strategies change with P supply, with less reliance on N(2)-fixation when the rhizosphere achieves a sufficient N uptake zone.
Agritrop arrow_drop_down Journal of Plant PhysiologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2010.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Plant PhysiologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2010.10.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu