Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Tang; Muhammad Yaseen; Yasir Hamid; Muhammad Zahir Aziz; +4 Authors

    Field experiments were conducted in two consecutive rice-wheat cropping seasons on a yellow clay soil to assess the efficacy of organic and inorganic amendments for cadmium (Cd) and lead (Pb) immobilization. Amendments were applied alone and in combinations to compare their efficacy for metals immobilization. Composite amendment of GSA-4 (Green Stabilizing Agent) and biochar resulted in higher biomass and grains yield for both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Liming, DEK1 (Di Kang No. 1) or GSA-4 amendment increased soil pH from 6.34 to 7.35, 7.20 and 7.15, respectively. Soil amendments significantly reduced DTPA extractable Cd and Pb in soil at wheat harvest. Cadmium and Pb fractionation showed a significant decrease in the extractable fractions by the amendment of biochar (34% and 25%) or GSA-4 (35% and 26%, respectively). GSA-4 and biochar amendment enhanced metals immobilization and reduced their uptake by plant and subsequent accumulation in the grains of rice and wheat, particularly with GSA-4. These results indicate that GSA-4 and biochar, especially their combination, have great potential for application to remediate Cd and Pb contaminated soils.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    191
    citations191
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Tang; Muhammad Bilal Khan; Beena Naqvi; Xiaoe Yang; +5 Authors

    Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Sciences
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Sciences
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasir Hamid; Lin Tang; Xiaoe Yang; Meihua Deng; +4 Authors

    Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production. The objective of this study was to develop a PCC technology system for greenhouse fields co-contaminated with Cd and nitrate using hyperaccumulator Sedum alfredii. In this system, endophytic bacterium M002 inoculation, CO2 fertilization, and fermentation residue were continuously applied to improve the growth of S. alfredii, and low-accumulator Ipomoea aquatica and low-accumulator Brassica chinensis were rotated under reasonable water management. These comprehensive management practices were shown to increase S. alfredii biomass and Cd uptake and reduce Cd and nitrate concentration in I. aquatica and B. chinensis. This crop rotating system could remove 56.5% total Cd, 62.3% DTPA extractable Cd, and 65.4% nitrate, respectively, from the co-contaminated soil in 2 years of phytoremediation, and is an effective way of remediating moderately co-contaminated soil by Cd and nitrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Tang; Muhammad Yaseen; Yasir Hamid; Muhammad Zahir Aziz; +4 Authors

    Field experiments were conducted in two consecutive rice-wheat cropping seasons on a yellow clay soil to assess the efficacy of organic and inorganic amendments for cadmium (Cd) and lead (Pb) immobilization. Amendments were applied alone and in combinations to compare their efficacy for metals immobilization. Composite amendment of GSA-4 (Green Stabilizing Agent) and biochar resulted in higher biomass and grains yield for both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Liming, DEK1 (Di Kang No. 1) or GSA-4 amendment increased soil pH from 6.34 to 7.35, 7.20 and 7.15, respectively. Soil amendments significantly reduced DTPA extractable Cd and Pb in soil at wheat harvest. Cadmium and Pb fractionation showed a significant decrease in the extractable fractions by the amendment of biochar (34% and 25%) or GSA-4 (35% and 26%, respectively). GSA-4 and biochar amendment enhanced metals immobilization and reduced their uptake by plant and subsequent accumulation in the grains of rice and wheat, particularly with GSA-4. These results indicate that GSA-4 and biochar, especially their combination, have great potential for application to remediate Cd and Pb contaminated soils.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemosphere
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    191
    citations191
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemosphere
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Tang; Muhammad Bilal Khan; Beena Naqvi; Xiaoe Yang; +5 Authors

    Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Sciences
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Sciences
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasir Hamid; Lin Tang; Xiaoe Yang; Meihua Deng; +4 Authors

    Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production. The objective of this study was to develop a PCC technology system for greenhouse fields co-contaminated with Cd and nitrate using hyperaccumulator Sedum alfredii. In this system, endophytic bacterium M002 inoculation, CO2 fertilization, and fermentation residue were continuously applied to improve the growth of S. alfredii, and low-accumulator Ipomoea aquatica and low-accumulator Brassica chinensis were rotated under reasonable water management. These comprehensive management practices were shown to increase S. alfredii biomass and Cd uptake and reduce Cd and nitrate concentration in I. aquatica and B. chinensis. This crop rotating system could remove 56.5% total Cd, 62.3% DTPA extractable Cd, and 65.4% nitrate, respectively, from the co-contaminated soil in 2 years of phytoremediation, and is an effective way of remediating moderately co-contaminated soil by Cd and nitrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph