- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lin Tang; Muhammad Yaseen; Yasir Hamid; Muhammad Zahir Aziz; Xiaoe Yang; Zhenli He; Bilal Hussain; Afsheen Zehra;pmid: 30265933
Field experiments were conducted in two consecutive rice-wheat cropping seasons on a yellow clay soil to assess the efficacy of organic and inorganic amendments for cadmium (Cd) and lead (Pb) immobilization. Amendments were applied alone and in combinations to compare their efficacy for metals immobilization. Composite amendment of GSA-4 (Green Stabilizing Agent) and biochar resulted in higher biomass and grains yield for both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Liming, DEK1 (Di Kang No. 1) or GSA-4 amendment increased soil pH from 6.34 to 7.35, 7.20 and 7.15, respectively. Soil amendments significantly reduced DTPA extractable Cd and Pb in soil at wheat harvest. Cadmium and Pb fractionation showed a significant decrease in the extractable fractions by the amendment of biochar (34% and 25%) or GSA-4 (35% and 26%, respectively). GSA-4 and biochar amendment enhanced metals immobilization and reduced their uptake by plant and subsequent accumulation in the grains of rice and wheat, particularly with GSA-4. These results indicate that GSA-4 and biochar, especially their combination, have great potential for application to remediate Cd and Pb contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Tang; Muhammad Bilal Khan; Beena Naqvi; Xiaoe Yang; Afsheen Zehra; Zulfiqar Ali Sahito; Zarina Ali; Yasir Hamid; Wenbin Tong;pmid: 31791497
Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Yasir Hamid; Lin Tang; Xiaoe Yang; Meihua Deng; Weikang Chen; Zhenli He; Luo Weijun; Hanumanth Kumar Gurajala;pmid: 28669090
Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production. The objective of this study was to develop a PCC technology system for greenhouse fields co-contaminated with Cd and nitrate using hyperaccumulator Sedum alfredii. In this system, endophytic bacterium M002 inoculation, CO2 fertilization, and fermentation residue were continuously applied to improve the growth of S. alfredii, and low-accumulator Ipomoea aquatica and low-accumulator Brassica chinensis were rotated under reasonable water management. These comprehensive management practices were shown to increase S. alfredii biomass and Cd uptake and reduce Cd and nitrate concentration in I. aquatica and B. chinensis. This crop rotating system could remove 56.5% total Cd, 62.3% DTPA extractable Cd, and 65.4% nitrate, respectively, from the co-contaminated soil in 2 years of phytoremediation, and is an effective way of remediating moderately co-contaminated soil by Cd and nitrate.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lin Tang; Muhammad Yaseen; Yasir Hamid; Muhammad Zahir Aziz; Xiaoe Yang; Zhenli He; Bilal Hussain; Afsheen Zehra;pmid: 30265933
Field experiments were conducted in two consecutive rice-wheat cropping seasons on a yellow clay soil to assess the efficacy of organic and inorganic amendments for cadmium (Cd) and lead (Pb) immobilization. Amendments were applied alone and in combinations to compare their efficacy for metals immobilization. Composite amendment of GSA-4 (Green Stabilizing Agent) and biochar resulted in higher biomass and grains yield for both rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Liming, DEK1 (Di Kang No. 1) or GSA-4 amendment increased soil pH from 6.34 to 7.35, 7.20 and 7.15, respectively. Soil amendments significantly reduced DTPA extractable Cd and Pb in soil at wheat harvest. Cadmium and Pb fractionation showed a significant decrease in the extractable fractions by the amendment of biochar (34% and 25%) or GSA-4 (35% and 26%, respectively). GSA-4 and biochar amendment enhanced metals immobilization and reduced their uptake by plant and subsequent accumulation in the grains of rice and wheat, particularly with GSA-4. These results indicate that GSA-4 and biochar, especially their combination, have great potential for application to remediate Cd and Pb contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 191 citations 191 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2018.09.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lin Tang; Muhammad Bilal Khan; Beena Naqvi; Xiaoe Yang; Afsheen Zehra; Zulfiqar Ali Sahito; Zarina Ali; Yasir Hamid; Wenbin Tong;pmid: 31791497
Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.05.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Yasir Hamid; Lin Tang; Xiaoe Yang; Meihua Deng; Weikang Chen; Zhenli He; Luo Weijun; Hanumanth Kumar Gurajala;pmid: 28669090
Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production. The objective of this study was to develop a PCC technology system for greenhouse fields co-contaminated with Cd and nitrate using hyperaccumulator Sedum alfredii. In this system, endophytic bacterium M002 inoculation, CO2 fertilization, and fermentation residue were continuously applied to improve the growth of S. alfredii, and low-accumulator Ipomoea aquatica and low-accumulator Brassica chinensis were rotated under reasonable water management. These comprehensive management practices were shown to increase S. alfredii biomass and Cd uptake and reduce Cd and nitrate concentration in I. aquatica and B. chinensis. This crop rotating system could remove 56.5% total Cd, 62.3% DTPA extractable Cd, and 65.4% nitrate, respectively, from the co-contaminated soil in 2 years of phytoremediation, and is an effective way of remediating moderately co-contaminated soil by Cd and nitrate.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9146-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu