- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jing Zhang; Dian Qin; Yongchun Ye; Yu He; Xiaofan Fu; Jing Yang; Guoyi Shi; Heng Zhang;Due to the source and load prediction errors and uncertainties, the real operation state of microgrid may deviate significantly from the expected state, which leads to prevent the system from reaching its expected economic effects. In order to obtain the optimal economic effects for microgrid scheduling, an optimal microgrid scheduling model considered the demand responses is built in this paper firstly, and then a multi-time scale economic scheduling method based on day-ahead robust optimization and intraday model predictive control (MPC), is developed as well. Moreover, in the day-ahead stage, the long-time scale interval is set as 1 h and the robust optimization is used to address the low-frequency components in prediction errors and uncertainties. Meanwhile, the robust optimization enables to gain the day-head optimal economic scheduling plan for the microgrid and to keep the system operating effectively even when large-scale fluctuations happen. Furthermore, in the intraday stage, the short-time scale interval is set as 15 mins and MPC is adopted to track and correct the day-ahead economic scheduling plan, which enables to address the high-frequency components in prediction errors and uncertainties. Finally, simulation results demonstrate the feasibility of the proposed optimal microgrid scheduling model and the validity of the proposed multi-time scale economic scheduling method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3118716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3118716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jing Zhang; Dian Qin; Yongchun Ye; Yu He; Xiaofan Fu; Jing Yang; Guoyi Shi; Heng Zhang;Due to the source and load prediction errors and uncertainties, the real operation state of microgrid may deviate significantly from the expected state, which leads to prevent the system from reaching its expected economic effects. In order to obtain the optimal economic effects for microgrid scheduling, an optimal microgrid scheduling model considered the demand responses is built in this paper firstly, and then a multi-time scale economic scheduling method based on day-ahead robust optimization and intraday model predictive control (MPC), is developed as well. Moreover, in the day-ahead stage, the long-time scale interval is set as 1 h and the robust optimization is used to address the low-frequency components in prediction errors and uncertainties. Meanwhile, the robust optimization enables to gain the day-head optimal economic scheduling plan for the microgrid and to keep the system operating effectively even when large-scale fluctuations happen. Furthermore, in the intraday stage, the short-time scale interval is set as 15 mins and MPC is adopted to track and correct the day-ahead economic scheduling plan, which enables to address the high-frequency components in prediction errors and uncertainties. Finally, simulation results demonstrate the feasibility of the proposed optimal microgrid scheduling model and the validity of the proposed multi-time scale economic scheduling method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3118716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3118716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu