- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:MDPI AG Marta Nunes da Silva; Joana Machado; Jazmin Osorio; Rafael Duarte; Carla S. Santos;Agricultural systems are constantly under environmental pressure, and the continuous rise of the global population requires an increasingly intensification of agronomical productivity. To meet the current global food demand, particularly in depleted ecosystems under adverse climate conditions, the development of novel agronomical practices, which ensure crop productivity while safeguarding minimal impact to the environment, must be encouraged. Since aluminium (Al), cobalt (Co), selenium (Se), silicon (Si) and sodium (Na) are not essential to plant metabolism, their benefits are often neglected or underestimated in agriculture; however, several studies support their advantages in sustainable agriculture when properly employed. The agronomical uses of these elements have been studied in the last decades, delivering important cues for the improvement of food and feed production worldwide due to beneficial effects in plant growth and productivity, nutrient balance, pest and pathogen resistance, water stress management, heavy-metal toxicity alleviation, and postharvest performance. However, their application has not been addressed as part of a holistic conservation strategy that supports the sustainability of agroecosystems. Here, we discuss the potential use of these elements in sustainable agriculture, and the knowledge gaps that hinder their effective integration into agronomical practices, which result in equally profitable applications while supporting environmental sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 30 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Boris Bokor; Carla S. Santos; Dominik Kostoláni; Joana Machado; Marta Nunes da Silva; Susana M.P. Carvalho; Marek Vaculík; Marta W. Vasconcelos;pmid: 34492957
In the last decades, the concentration of atmospheric CO2 and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases. Silicon (Si), as a beneficial element for plants, is involved in plant tolerance and/or resistance to various abiotic and biotic stresses. The beneficial role of Si has been shown in various plant species and its accumulation relies on the root's uptake capacity. However, Si uptake in plants depends on many biogeochemical factors that may be substantially altered in the future, affecting its functional role in plant protection. At present, it is not clear whether Si accumulation in plants will be positively or negatively affected by changing climate and environmental conditions. In this review, we focused on Si interaction with the most important factors of global change and environmental hazards in plants, discussing the potential role of its application as an alleviation strategy for climate and environmental hazards based on current knowledge.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.126193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 75visibility views 75 download downloads 166 Powered bymore_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.126193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:MDPI AG Marta Nunes da Silva; Joana Machado; Jazmin Osorio; Rafael Duarte; Carla S. Santos;Agricultural systems are constantly under environmental pressure, and the continuous rise of the global population requires an increasingly intensification of agronomical productivity. To meet the current global food demand, particularly in depleted ecosystems under adverse climate conditions, the development of novel agronomical practices, which ensure crop productivity while safeguarding minimal impact to the environment, must be encouraged. Since aluminium (Al), cobalt (Co), selenium (Se), silicon (Si) and sodium (Na) are not essential to plant metabolism, their benefits are often neglected or underestimated in agriculture; however, several studies support their advantages in sustainable agriculture when properly employed. The agronomical uses of these elements have been studied in the last decades, delivering important cues for the improvement of food and feed production worldwide due to beneficial effects in plant growth and productivity, nutrient balance, pest and pathogen resistance, water stress management, heavy-metal toxicity alleviation, and postharvest performance. However, their application has not been addressed as part of a holistic conservation strategy that supports the sustainability of agroecosystems. Here, we discuss the potential use of these elements in sustainable agriculture, and the knowledge gaps that hinder their effective integration into agronomical practices, which result in equally profitable applications while supporting environmental sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 30 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Boris Bokor; Carla S. Santos; Dominik Kostoláni; Joana Machado; Marta Nunes da Silva; Susana M.P. Carvalho; Marek Vaculík; Marta W. Vasconcelos;pmid: 34492957
In the last decades, the concentration of atmospheric CO2 and the average temperature have been increasing, and this trend is expected to become more severe in the near future. Additionally, environmental stresses including drought, salinity, UV-radiation, heavy metals, and toxic elements exposure represent a threat for ecosystems and agriculture. Climate and environmental changes negatively affect plant growth, biomass and yield production, and also enhance plant susceptibility to pests and diseases. Silicon (Si), as a beneficial element for plants, is involved in plant tolerance and/or resistance to various abiotic and biotic stresses. The beneficial role of Si has been shown in various plant species and its accumulation relies on the root's uptake capacity. However, Si uptake in plants depends on many biogeochemical factors that may be substantially altered in the future, affecting its functional role in plant protection. At present, it is not clear whether Si accumulation in plants will be positively or negatively affected by changing climate and environmental conditions. In this review, we focused on Si interaction with the most important factors of global change and environmental hazards in plants, discussing the potential role of its application as an alleviation strategy for climate and environmental hazards based on current knowledge.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.126193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 75visibility views 75 download downloads 166 Powered bymore_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2021.126193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu