- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Wiley Authors: Zefeng Chen; Weiguang Wang; Alessandro Cescatti; Giovanni Forzieri;AbstractClimate change alters surface water availability (WA; precipitation minus evapotranspiration, P − ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on WA have long been recognized and assessed, indirect climate effects occurring through adjustments in terrestrial vegetation are more subtle and not yet fully quantified. To address this knowledge gap, here we investigate the interplay between climate‐induced changes in leaf area index (LAI) and ET and quantify its ultimate effect on WA during the period 1982–2016 at the global scale, using an ensemble of data‐driven products and land surface models. We show that ~44% of the global vegetated land has experienced a significant increase in growing season‐averaged LAI and climate change explains 33.5% of this greening signal. Such climate‐induced greening has enhanced ET of 0.051 ± 0.067 mm year−2 (mean ± SD), further amplifying the ongoing increase in ET directly driven by variations in climatic factors over 36.8% of the globe, and thus exacerbating the decline in WA prominently in drylands. These findings highlight the indirect impact of positive feedbacks in the land–climate system on the decline of WA, and call for an in‐depth evaluation of these phenomena in the design of local mitigation and adaptation plans.
Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | eco2adaptEC| eco2adaptAuthors: Zefeng Chen; Weiguang Wang; Giovanni Forzieri; Alessandro Cescatti;AbstractAlthough elevated atmospheric CO2 concentration (eCO2) has substantial indirect effects on vegetation carbon uptake via associated climate change, their dynamics remain unclear. Here we investigate how the impacts of eCO2-driven climate change on growing-season gross primary production have changed globally during 1982–2014, using satellite observations and Earth system models, and evaluate their evolution until the year 2100. We show that the initial positive effect of eCO2-induced climate change on vegetation carbon uptake has declined recently, shifting to negative in the early 21st century. Such emerging pattern appears prominent in high latitudes and occurs in combination with a decrease of direct CO2 physiological effect, ultimately resulting in a sharp reduction of the current growth benefits induced by climate warming and CO2 fertilization. Such weakening of the indirect CO2 effect can be partially attributed to the widespread land drying, and it is expected to be further exacerbated under global warming.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45957-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45957-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Wiley Authors: Zefeng Chen; Weiguang Wang; Alessandro Cescatti; Giovanni Forzieri;AbstractClimate change alters surface water availability (WA; precipitation minus evapotranspiration, P − ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on WA have long been recognized and assessed, indirect climate effects occurring through adjustments in terrestrial vegetation are more subtle and not yet fully quantified. To address this knowledge gap, here we investigate the interplay between climate‐induced changes in leaf area index (LAI) and ET and quantify its ultimate effect on WA during the period 1982–2016 at the global scale, using an ensemble of data‐driven products and land surface models. We show that ~44% of the global vegetated land has experienced a significant increase in growing season‐averaged LAI and climate change explains 33.5% of this greening signal. Such climate‐induced greening has enhanced ET of 0.051 ± 0.067 mm year−2 (mean ± SD), further amplifying the ongoing increase in ET directly driven by variations in climatic factors over 36.8% of the globe, and thus exacerbating the decline in WA prominently in drylands. These findings highlight the indirect impact of positive feedbacks in the land–climate system on the decline of WA, and call for an in‐depth evaluation of these phenomena in the design of local mitigation and adaptation plans.
Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | eco2adaptEC| eco2adaptAuthors: Zefeng Chen; Weiguang Wang; Giovanni Forzieri; Alessandro Cescatti;AbstractAlthough elevated atmospheric CO2 concentration (eCO2) has substantial indirect effects on vegetation carbon uptake via associated climate change, their dynamics remain unclear. Here we investigate how the impacts of eCO2-driven climate change on growing-season gross primary production have changed globally during 1982–2014, using satellite observations and Earth system models, and evaluate their evolution until the year 2100. We show that the initial positive effect of eCO2-induced climate change on vegetation carbon uptake has declined recently, shifting to negative in the early 21st century. Such emerging pattern appears prominent in high latitudes and occurs in combination with a decrease of direct CO2 physiological effect, ultimately resulting in a sharp reduction of the current growth benefits induced by climate warming and CO2 fertilization. Such weakening of the indirect CO2 effect can be partially attributed to the widespread land drying, and it is expected to be further exacerbated under global warming.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45957-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-45957-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu