- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Rezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; +3 AuthorsRezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; Prana Ugiana Gio; Mohammad Basyuni; Bens Pardamean;doi: 10.3390/su13147807
The COVID-19 pandemic has caused effects in many sectors, including in businesses and enterprises. The most vulnerable businesses to COVID-19 are micro, small, and medium enterprises (MSMEs). Therefore, this paper aims to analyze the business vulnerability of MSMEs in Indonesia using the fuzzy spatial clustering approach. The fuzzy spatial clustering approach had been implemented to analyze the social vulnerability to natural hazards in Indonesia. Moreover, this study proposes the Flower Pollination Algorithm (FPA) to optimize the Fuzzy Geographically Weighted Clustering (FGWC) in order to cluster the business vulnerability in Indonesia. We performed the data analysis with the dataset from Indonesia’s national socioeconomic and labor force survey (SUSENAS and SAKERNAS). We first compared the performance of FPA with traditional FGWC, as well as several known optimization algorithms in FGWC such as Artificial Bee Colony, Intelligent Firefly Algorithm, Particle Swarm Optimization, and Gravitational Search Algorithm. Our results showed that FPAFGWC has the best performance in optimizing the FGWC clustering result in the business vulnerability context. We found that almost all of the regions in Indonesia outside Java Island have vulnerable businesses. Meanwhile, in most of Java Island, particularly the JABODETABEK area that is the national economic backbone, businesses are not vulnerable. Based on the results of the study, we provide the recommendation to handle the gap between the number of micro and small enterprises (MSMEs) in Indonesia.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Rezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; +3 AuthorsRezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; Prana Ugiana Gio; Mohammad Basyuni; Bens Pardamean;doi: 10.3390/su13147807
The COVID-19 pandemic has caused effects in many sectors, including in businesses and enterprises. The most vulnerable businesses to COVID-19 are micro, small, and medium enterprises (MSMEs). Therefore, this paper aims to analyze the business vulnerability of MSMEs in Indonesia using the fuzzy spatial clustering approach. The fuzzy spatial clustering approach had been implemented to analyze the social vulnerability to natural hazards in Indonesia. Moreover, this study proposes the Flower Pollination Algorithm (FPA) to optimize the Fuzzy Geographically Weighted Clustering (FGWC) in order to cluster the business vulnerability in Indonesia. We performed the data analysis with the dataset from Indonesia’s national socioeconomic and labor force survey (SUSENAS and SAKERNAS). We first compared the performance of FPA with traditional FGWC, as well as several known optimization algorithms in FGWC such as Artificial Bee Colony, Intelligent Firefly Algorithm, Particle Swarm Optimization, and Gravitational Search Algorithm. Our results showed that FPAFGWC has the best performance in optimizing the FGWC clustering result in the business vulnerability context. We found that almost all of the regions in Indonesia outside Java Island have vulnerable businesses. Meanwhile, in most of Java Island, particularly the JABODETABEK area that is the national economic backbone, businesses are not vulnerable. Based on the results of the study, we provide the recommendation to handle the gap between the number of micro and small enterprises (MSMEs) in Indonesia.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Robert Kurniawan; Novan Adi Adi Nugroho; Ahmad Fudholi; Agung Purwanto; Bagus Sumargo; Prana Ugiana Gio; Sri Kuswantono Wongsonadi;Purpose The purpose of this paper is to determine the effect of the industrial sector, renewable energy consumption and nonrenewable energy consumption in Indonesia on the ecological footprint from 1990 to 2020 in the short and long term. Design/methodology/approach This paper uses vector error correction model (VECM) analysis to examine the relationship in the short and long term. In addition, the impulse response function is used to enable future forecasts up to 2060 of the ecological footprint as a measure of environmental degradation caused by changes or shocks in industrial value-added, renewable energy consumption and nonrenewable energy consumption. Furthermore, forecast error decomposition of variance (FEVD) analysis is carried out to predict the percentage contribution of each variable’s variance to changes in a specific variable. Granger causality testing is used to enhance the analysis outcomes within the framework of VECM. Findings Using VECM analysis, the speed of adjustment for environmental damage is quite high in the short term, at 246%. This finding suggests that when there is a short-term imbalance in industrial value-added, renewable energy consumption and nonrenewable energy consumption, the ecological footprint experiences a very rapid adjustment, at 246%, to move towards long-term balance. Then, in the long term, the ecological footprint in Indonesia is most influenced by nonrenewable energy consumption. This is also confirmed by the Granger causality test and the results of FEVD, which show that the contribution of nonrenewable energy consumption will be 10.207% in 2060 and will be the main contributor to the ecological footprint in the coming years to achieve net-zero emissions in 2060. In the long run, renewable energy consumption has a negative effect on the ecological footprint, whereas industrial value-added and nonrenewable energy consumption have a positive effect. Originality/value For the first time, value added from the industrial sector is being used alongside renewable and nonrenewable energy consumption to measure Indonesia’s ecological footprint. The primary cause of Indonesia’s alarming environmental degradation is the industrial sector, which acts as the driving force behind this issue. Consequently, this contribution is expected to inform the policy implications required to achieve zero carbon emissions by 2060, aligned with the G20 countries’ Bali agreement of 2022.
International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Robert Kurniawan; Novan Adi Adi Nugroho; Ahmad Fudholi; Agung Purwanto; Bagus Sumargo; Prana Ugiana Gio; Sri Kuswantono Wongsonadi;Purpose The purpose of this paper is to determine the effect of the industrial sector, renewable energy consumption and nonrenewable energy consumption in Indonesia on the ecological footprint from 1990 to 2020 in the short and long term. Design/methodology/approach This paper uses vector error correction model (VECM) analysis to examine the relationship in the short and long term. In addition, the impulse response function is used to enable future forecasts up to 2060 of the ecological footprint as a measure of environmental degradation caused by changes or shocks in industrial value-added, renewable energy consumption and nonrenewable energy consumption. Furthermore, forecast error decomposition of variance (FEVD) analysis is carried out to predict the percentage contribution of each variable’s variance to changes in a specific variable. Granger causality testing is used to enhance the analysis outcomes within the framework of VECM. Findings Using VECM analysis, the speed of adjustment for environmental damage is quite high in the short term, at 246%. This finding suggests that when there is a short-term imbalance in industrial value-added, renewable energy consumption and nonrenewable energy consumption, the ecological footprint experiences a very rapid adjustment, at 246%, to move towards long-term balance. Then, in the long term, the ecological footprint in Indonesia is most influenced by nonrenewable energy consumption. This is also confirmed by the Granger causality test and the results of FEVD, which show that the contribution of nonrenewable energy consumption will be 10.207% in 2060 and will be the main contributor to the ecological footprint in the coming years to achieve net-zero emissions in 2060. In the long run, renewable energy consumption has a negative effect on the ecological footprint, whereas industrial value-added and nonrenewable energy consumption have a positive effect. Originality/value For the first time, value added from the industrial sector is being used alongside renewable and nonrenewable energy consumption to measure Indonesia’s ecological footprint. The primary cause of Indonesia’s alarming environmental degradation is the industrial sector, which acts as the driving force behind this issue. Consequently, this contribution is expected to inform the policy implications required to achieve zero carbon emissions by 2060, aligned with the G20 countries’ Bali agreement of 2022.
International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Rezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; +3 AuthorsRezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; Prana Ugiana Gio; Mohammad Basyuni; Bens Pardamean;doi: 10.3390/su13147807
The COVID-19 pandemic has caused effects in many sectors, including in businesses and enterprises. The most vulnerable businesses to COVID-19 are micro, small, and medium enterprises (MSMEs). Therefore, this paper aims to analyze the business vulnerability of MSMEs in Indonesia using the fuzzy spatial clustering approach. The fuzzy spatial clustering approach had been implemented to analyze the social vulnerability to natural hazards in Indonesia. Moreover, this study proposes the Flower Pollination Algorithm (FPA) to optimize the Fuzzy Geographically Weighted Clustering (FGWC) in order to cluster the business vulnerability in Indonesia. We performed the data analysis with the dataset from Indonesia’s national socioeconomic and labor force survey (SUSENAS and SAKERNAS). We first compared the performance of FPA with traditional FGWC, as well as several known optimization algorithms in FGWC such as Artificial Bee Colony, Intelligent Firefly Algorithm, Particle Swarm Optimization, and Gravitational Search Algorithm. Our results showed that FPAFGWC has the best performance in optimizing the FGWC clustering result in the business vulnerability context. We found that almost all of the regions in Indonesia outside Java Island have vulnerable businesses. Meanwhile, in most of Java Island, particularly the JABODETABEK area that is the national economic backbone, businesses are not vulnerable. Based on the results of the study, we provide the recommendation to handle the gap between the number of micro and small enterprises (MSMEs) in Indonesia.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Rezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; +3 AuthorsRezzy Eko Caraka; Robert Kurniawan; Bahrul Ilmi Nasution; Jamilatuzzahro Jamilatuzzahro; Prana Ugiana Gio; Mohammad Basyuni; Bens Pardamean;doi: 10.3390/su13147807
The COVID-19 pandemic has caused effects in many sectors, including in businesses and enterprises. The most vulnerable businesses to COVID-19 are micro, small, and medium enterprises (MSMEs). Therefore, this paper aims to analyze the business vulnerability of MSMEs in Indonesia using the fuzzy spatial clustering approach. The fuzzy spatial clustering approach had been implemented to analyze the social vulnerability to natural hazards in Indonesia. Moreover, this study proposes the Flower Pollination Algorithm (FPA) to optimize the Fuzzy Geographically Weighted Clustering (FGWC) in order to cluster the business vulnerability in Indonesia. We performed the data analysis with the dataset from Indonesia’s national socioeconomic and labor force survey (SUSENAS and SAKERNAS). We first compared the performance of FPA with traditional FGWC, as well as several known optimization algorithms in FGWC such as Artificial Bee Colony, Intelligent Firefly Algorithm, Particle Swarm Optimization, and Gravitational Search Algorithm. Our results showed that FPAFGWC has the best performance in optimizing the FGWC clustering result in the business vulnerability context. We found that almost all of the regions in Indonesia outside Java Island have vulnerable businesses. Meanwhile, in most of Java Island, particularly the JABODETABEK area that is the national economic backbone, businesses are not vulnerable. Based on the results of the study, we provide the recommendation to handle the gap between the number of micro and small enterprises (MSMEs) in Indonesia.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/14/7807/pdfData sources: Multidisciplinary Digital Publishing InstituteThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Robert Kurniawan; Novan Adi Adi Nugroho; Ahmad Fudholi; Agung Purwanto; Bagus Sumargo; Prana Ugiana Gio; Sri Kuswantono Wongsonadi;Purpose The purpose of this paper is to determine the effect of the industrial sector, renewable energy consumption and nonrenewable energy consumption in Indonesia on the ecological footprint from 1990 to 2020 in the short and long term. Design/methodology/approach This paper uses vector error correction model (VECM) analysis to examine the relationship in the short and long term. In addition, the impulse response function is used to enable future forecasts up to 2060 of the ecological footprint as a measure of environmental degradation caused by changes or shocks in industrial value-added, renewable energy consumption and nonrenewable energy consumption. Furthermore, forecast error decomposition of variance (FEVD) analysis is carried out to predict the percentage contribution of each variable’s variance to changes in a specific variable. Granger causality testing is used to enhance the analysis outcomes within the framework of VECM. Findings Using VECM analysis, the speed of adjustment for environmental damage is quite high in the short term, at 246%. This finding suggests that when there is a short-term imbalance in industrial value-added, renewable energy consumption and nonrenewable energy consumption, the ecological footprint experiences a very rapid adjustment, at 246%, to move towards long-term balance. Then, in the long term, the ecological footprint in Indonesia is most influenced by nonrenewable energy consumption. This is also confirmed by the Granger causality test and the results of FEVD, which show that the contribution of nonrenewable energy consumption will be 10.207% in 2060 and will be the main contributor to the ecological footprint in the coming years to achieve net-zero emissions in 2060. In the long run, renewable energy consumption has a negative effect on the ecological footprint, whereas industrial value-added and nonrenewable energy consumption have a positive effect. Originality/value For the first time, value added from the industrial sector is being used alongside renewable and nonrenewable energy consumption to measure Indonesia’s ecological footprint. The primary cause of Indonesia’s alarming environmental degradation is the industrial sector, which acts as the driving force behind this issue. Consequently, this contribution is expected to inform the policy implications required to achieve zero carbon emissions by 2060, aligned with the G20 countries’ Bali agreement of 2022.
International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Robert Kurniawan; Novan Adi Adi Nugroho; Ahmad Fudholi; Agung Purwanto; Bagus Sumargo; Prana Ugiana Gio; Sri Kuswantono Wongsonadi;Purpose The purpose of this paper is to determine the effect of the industrial sector, renewable energy consumption and nonrenewable energy consumption in Indonesia on the ecological footprint from 1990 to 2020 in the short and long term. Design/methodology/approach This paper uses vector error correction model (VECM) analysis to examine the relationship in the short and long term. In addition, the impulse response function is used to enable future forecasts up to 2060 of the ecological footprint as a measure of environmental degradation caused by changes or shocks in industrial value-added, renewable energy consumption and nonrenewable energy consumption. Furthermore, forecast error decomposition of variance (FEVD) analysis is carried out to predict the percentage contribution of each variable’s variance to changes in a specific variable. Granger causality testing is used to enhance the analysis outcomes within the framework of VECM. Findings Using VECM analysis, the speed of adjustment for environmental damage is quite high in the short term, at 246%. This finding suggests that when there is a short-term imbalance in industrial value-added, renewable energy consumption and nonrenewable energy consumption, the ecological footprint experiences a very rapid adjustment, at 246%, to move towards long-term balance. Then, in the long term, the ecological footprint in Indonesia is most influenced by nonrenewable energy consumption. This is also confirmed by the Granger causality test and the results of FEVD, which show that the contribution of nonrenewable energy consumption will be 10.207% in 2060 and will be the main contributor to the ecological footprint in the coming years to achieve net-zero emissions in 2060. In the long run, renewable energy consumption has a negative effect on the ecological footprint, whereas industrial value-added and nonrenewable energy consumption have a positive effect. Originality/value For the first time, value added from the industrial sector is being used alongside renewable and nonrenewable energy consumption to measure Indonesia’s ecological footprint. The primary cause of Indonesia’s alarming environmental degradation is the industrial sector, which acts as the driving force behind this issue. Consequently, this contribution is expected to inform the policy implications required to achieve zero carbon emissions by 2060, aligned with the G20 countries’ Bali agreement of 2022.
International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/ijesm-05-2023-0006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu