- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Sheikh Bilal Ahmad; Shahzada Mudaisr Rashid; Adil Farooq Wali; Shafat Ali; Muneeb U Rehman; Mir Tahir Maqbool; Ahmed Nadeem; Sheikh Fayaz Ahmad; Nahid Siddiqui;pmid: 35156864
Purpose: The current investigation was carried out to evaluate the efficacy of myricetin in ethanol-induced liver toxicity in Wistar rats. Research Design: Twenty-four rats were randomly divided into four groups with six animals per group. Group-I animals were administered with vehicle (distilled water), Group II, III, and IV were treated orally with sequential (per week) increase in the dose of ethanol (5, 8, 10, and 12 g/kg b wt per week in each group) for 28 days. Myricetin was treated orally to Group-III and IV animals at the respective doses of 25 mg/kg b wt. and 50 mg/kg b wt. Results: Our results showed that myricetin prevented hepatotoxicity by modulating the production of free radicals, ethanol metabolizing enzymes, and inflammatory markers in vivo. Myricetin also helped maintain lipid membrane integrity, oxidant-antioxidant status, and histoarchitecture. Ethanol administration caused elevation in XO, ADH, and CYP2E1 in hepatic tissue, which significantly normalized with myricetin administration. After ethanol administration, there was a steep increase in the hepatotoxicity biomarkers, including ALT, MDA, and AST. The level of cytotoxicity marker LDH also increased after ethanol administration; myricetin administration decreased the level of all these markers. Moreover, myricetin treatment also reduced ethanol-induced inflammatory markers such as NF-κB and IL-6. Conclusion: Findings from the current study demonstrate that myricetin administration prevents alcohol-induced hepatic injury by influencing the metabolism of ethanol, inhibiting oxidative stress, maintaining lipid profile, and suppressing inflammatory markers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09603271211066843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09603271211066843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Sampath, Raghul Kannan; Indrani Paramasivan, Latha Laxmi; Sheikh F, Ahmad; Ramasamy, Tamizhselvi;pmid: 38945197
Alcohol, or ethanol, is a major contributor to detrimental diseases and comorbidities worldwide. Alcohol use during pregnancy intervenes the developing embryos leading to morphological changes, neurocognitive defects, and behavioral changes known as fetal alcohol spectrum disorder (FASD). Zebrafish have been used as a model to study FASD; however, the mechanism and the impact of ethanol on oxidative stress and inflammation in the zebrafish FASD model remain unexplored. Hence, we exposed zebrafish embryos to different concentrations of ethanol (0 %, 0.5 %, 1.0 %, 1.25 %, and 1.5 % ethanol (v/v)) at 4-96 hours post-fertilization (hpf) to study and characterize the ethanol concentration for the FASD model to induce oxidative stress and inflammation. Here, we studied the survival rate and developmental toxicity parameters at different time points and measured oxidative stress, reactive oxygen species (ROS) generation, apoptosis, and pro-inflammatory gene expression in zebrafish larvae. Our findings indicate that ethanol causes various developmental abnormalities, including decreased survival rate, spontaneous tail coiling, hatching rate, heart rate, and body length, associated with increased malformation. Further, ethanol exposure induced oxidative stress by increasing lipid peroxidation and nitric oxide production and decreasing glutathione levels. Subsequently, ethanol increased ROS generation, apoptosis, and pro-inflammatory gene (TNF-α and IL-1β) expression in ethanol exposed larvae. 1.25 % and 1.5 % ethanol had significant impacts on zebrafish larvae in all studied parameters. However, 1.5 % ethanol showed decreased survival rate and increased malformations. Overall, 1.25 % ethanol is the ideal concentration to study the oxidative stress and inflammation in the zebrafish FASD model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tox.2024.153876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tox.2024.153876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Sheikh F. Ahmad; Sarang Bani; Phalisteen Sultan; Sheikh Abid Ali; Sabry M. Attia; Adel R. A. Abd-Allah; Saleh A. Bakheet;pmid: 23336701
Euphorbia hirta L. (Euphorbiaceae) (E. hirta) is a tree locally used as a traditional medicine in Africa and Australia to treat numerous diseases such as hypertension, respiratory ailments, tumors, and wounds, and it has reported antiallergic, antipyretic, anti-inflammatory activities, etc.This study evaluated the ability of fresh leaves of E. hirta ethanol extract to inhibit the intracellular tumor necrosis factor α (TNF-α) level in the synovial fluid and neutrophils in lipopolysaccharide (LPS)-induced inflamed rat knees.Female Wister albino rats 140-160 g were used. E. hirta ethanol extract was given orally at 25, 50, 100, and 200 mg/kg, 2 h before an intra-articular (i.a.) injection of LPS. Two and three hours later, synovial fluid and neutrophils levels of intracellular TNF-α production were measured.In the time course of the experiment, E. hirta maximum inhibition at 100 and 200 mg/kg (p.o.) dose showed 16.5 ± 1.34 and 14.4 ± 1.30% of synovial fluid, 4.26 ± 0.36 and 3.78 ± 0.29% of neutrophils levels of intracellular TNF-α productions at 2 h after LPS injection. LPS control displayed 22.97 ± 1.61 and 6.78 ± 0.34% of synovial fluid and neutrophils levels of intracellular TNF-α at 2 h after LPS injection. Intracellular TNF-α was also estimated at 3 h after LPS injection.The LPS-injected rat knee model gives a comparative study of acute anti-inflammatory responses. E. hirta inhibition of proinflammatory intracellular cytokine TNF-α production with LPS-induced inflamed rat knee is of great importance in defining the anti-arthritic potential of E. hirta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3109/13880209.2012.734315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3109/13880209.2012.734315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Sheikh Bilal Ahmad; Shahzada Mudaisr Rashid; Adil Farooq Wali; Shafat Ali; Muneeb U Rehman; Mir Tahir Maqbool; Ahmed Nadeem; Sheikh Fayaz Ahmad; Nahid Siddiqui;pmid: 35156864
Purpose: The current investigation was carried out to evaluate the efficacy of myricetin in ethanol-induced liver toxicity in Wistar rats. Research Design: Twenty-four rats were randomly divided into four groups with six animals per group. Group-I animals were administered with vehicle (distilled water), Group II, III, and IV were treated orally with sequential (per week) increase in the dose of ethanol (5, 8, 10, and 12 g/kg b wt per week in each group) for 28 days. Myricetin was treated orally to Group-III and IV animals at the respective doses of 25 mg/kg b wt. and 50 mg/kg b wt. Results: Our results showed that myricetin prevented hepatotoxicity by modulating the production of free radicals, ethanol metabolizing enzymes, and inflammatory markers in vivo. Myricetin also helped maintain lipid membrane integrity, oxidant-antioxidant status, and histoarchitecture. Ethanol administration caused elevation in XO, ADH, and CYP2E1 in hepatic tissue, which significantly normalized with myricetin administration. After ethanol administration, there was a steep increase in the hepatotoxicity biomarkers, including ALT, MDA, and AST. The level of cytotoxicity marker LDH also increased after ethanol administration; myricetin administration decreased the level of all these markers. Moreover, myricetin treatment also reduced ethanol-induced inflammatory markers such as NF-κB and IL-6. Conclusion: Findings from the current study demonstrate that myricetin administration prevents alcohol-induced hepatic injury by influencing the metabolism of ethanol, inhibiting oxidative stress, maintaining lipid profile, and suppressing inflammatory markers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09603271211066843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09603271211066843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Sampath, Raghul Kannan; Indrani Paramasivan, Latha Laxmi; Sheikh F, Ahmad; Ramasamy, Tamizhselvi;pmid: 38945197
Alcohol, or ethanol, is a major contributor to detrimental diseases and comorbidities worldwide. Alcohol use during pregnancy intervenes the developing embryos leading to morphological changes, neurocognitive defects, and behavioral changes known as fetal alcohol spectrum disorder (FASD). Zebrafish have been used as a model to study FASD; however, the mechanism and the impact of ethanol on oxidative stress and inflammation in the zebrafish FASD model remain unexplored. Hence, we exposed zebrafish embryos to different concentrations of ethanol (0 %, 0.5 %, 1.0 %, 1.25 %, and 1.5 % ethanol (v/v)) at 4-96 hours post-fertilization (hpf) to study and characterize the ethanol concentration for the FASD model to induce oxidative stress and inflammation. Here, we studied the survival rate and developmental toxicity parameters at different time points and measured oxidative stress, reactive oxygen species (ROS) generation, apoptosis, and pro-inflammatory gene expression in zebrafish larvae. Our findings indicate that ethanol causes various developmental abnormalities, including decreased survival rate, spontaneous tail coiling, hatching rate, heart rate, and body length, associated with increased malformation. Further, ethanol exposure induced oxidative stress by increasing lipid peroxidation and nitric oxide production and decreasing glutathione levels. Subsequently, ethanol increased ROS generation, apoptosis, and pro-inflammatory gene (TNF-α and IL-1β) expression in ethanol exposed larvae. 1.25 % and 1.5 % ethanol had significant impacts on zebrafish larvae in all studied parameters. However, 1.5 % ethanol showed decreased survival rate and increased malformations. Overall, 1.25 % ethanol is the ideal concentration to study the oxidative stress and inflammation in the zebrafish FASD model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tox.2024.153876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tox.2024.153876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Sheikh F. Ahmad; Sarang Bani; Phalisteen Sultan; Sheikh Abid Ali; Sabry M. Attia; Adel R. A. Abd-Allah; Saleh A. Bakheet;pmid: 23336701
Euphorbia hirta L. (Euphorbiaceae) (E. hirta) is a tree locally used as a traditional medicine in Africa and Australia to treat numerous diseases such as hypertension, respiratory ailments, tumors, and wounds, and it has reported antiallergic, antipyretic, anti-inflammatory activities, etc.This study evaluated the ability of fresh leaves of E. hirta ethanol extract to inhibit the intracellular tumor necrosis factor α (TNF-α) level in the synovial fluid and neutrophils in lipopolysaccharide (LPS)-induced inflamed rat knees.Female Wister albino rats 140-160 g were used. E. hirta ethanol extract was given orally at 25, 50, 100, and 200 mg/kg, 2 h before an intra-articular (i.a.) injection of LPS. Two and three hours later, synovial fluid and neutrophils levels of intracellular TNF-α production were measured.In the time course of the experiment, E. hirta maximum inhibition at 100 and 200 mg/kg (p.o.) dose showed 16.5 ± 1.34 and 14.4 ± 1.30% of synovial fluid, 4.26 ± 0.36 and 3.78 ± 0.29% of neutrophils levels of intracellular TNF-α productions at 2 h after LPS injection. LPS control displayed 22.97 ± 1.61 and 6.78 ± 0.34% of synovial fluid and neutrophils levels of intracellular TNF-α at 2 h after LPS injection. Intracellular TNF-α was also estimated at 3 h after LPS injection.The LPS-injected rat knee model gives a comparative study of acute anti-inflammatory responses. E. hirta inhibition of proinflammatory intracellular cytokine TNF-α production with LPS-induced inflamed rat knee is of great importance in defining the anti-arthritic potential of E. hirta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3109/13880209.2012.734315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3109/13880209.2012.734315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu