- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASTM International Authors: Yun-zhi Tan; Fan Peng; Gideon Mbwenga Limunga;doi: 10.1520/gtj20190026
Abstract The effect of steam on the buffer material used in high-level radioactive waste (HLW) repositories has led to incessant uncertainty on the safety assessment because of the likelihood of loss in isolating potential. Hydraulic properties of compacted bentonite during vapor treatment is not fully and directly understood because of the difficulty of performing necessary tests under repository conditions. This article presents a vapor testing device conceived of and developed to monitor the evolution of swelling pressure and gas pressure during steam treatment and hydraulic conductivity after treatment under constant volume conditions. Although heat lag and thermal expansion were observed, the heating procedures were cautiously controlled and the swelling pressures were corrected, accordingly. Furthermore, the hydraulic properties of compacted bentonite during and after treatment were tested with a water-to-solid ratio of 1.3 and at different temperatures. Overall, the developed apparatus has demonstrated itself as an effective tool to better comprehend the interaction between bentonite and water vapor as regards to the temperature gradient and boundary conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASTM International Authors: Yun-zhi Tan; Fan Peng; Gideon Mbwenga Limunga;doi: 10.1520/gtj20190026
Abstract The effect of steam on the buffer material used in high-level radioactive waste (HLW) repositories has led to incessant uncertainty on the safety assessment because of the likelihood of loss in isolating potential. Hydraulic properties of compacted bentonite during vapor treatment is not fully and directly understood because of the difficulty of performing necessary tests under repository conditions. This article presents a vapor testing device conceived of and developed to monitor the evolution of swelling pressure and gas pressure during steam treatment and hydraulic conductivity after treatment under constant volume conditions. Although heat lag and thermal expansion were observed, the heating procedures were cautiously controlled and the swelling pressures were corrected, accordingly. Furthermore, the hydraulic properties of compacted bentonite during and after treatment were tested with a water-to-solid ratio of 1.3 and at different temperatures. Overall, the developed apparatus has demonstrated itself as an effective tool to better comprehend the interaction between bentonite and water vapor as regards to the temperature gradient and boundary conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASTM International Authors: Yun-zhi Tan; Fan Peng; Gideon Mbwenga Limunga;doi: 10.1520/gtj20190026
Abstract The effect of steam on the buffer material used in high-level radioactive waste (HLW) repositories has led to incessant uncertainty on the safety assessment because of the likelihood of loss in isolating potential. Hydraulic properties of compacted bentonite during vapor treatment is not fully and directly understood because of the difficulty of performing necessary tests under repository conditions. This article presents a vapor testing device conceived of and developed to monitor the evolution of swelling pressure and gas pressure during steam treatment and hydraulic conductivity after treatment under constant volume conditions. Although heat lag and thermal expansion were observed, the heating procedures were cautiously controlled and the swelling pressures were corrected, accordingly. Furthermore, the hydraulic properties of compacted bentonite during and after treatment were tested with a water-to-solid ratio of 1.3 and at different temperatures. Overall, the developed apparatus has demonstrated itself as an effective tool to better comprehend the interaction between bentonite and water vapor as regards to the temperature gradient and boundary conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASTM International Authors: Yun-zhi Tan; Fan Peng; Gideon Mbwenga Limunga;doi: 10.1520/gtj20190026
Abstract The effect of steam on the buffer material used in high-level radioactive waste (HLW) repositories has led to incessant uncertainty on the safety assessment because of the likelihood of loss in isolating potential. Hydraulic properties of compacted bentonite during vapor treatment is not fully and directly understood because of the difficulty of performing necessary tests under repository conditions. This article presents a vapor testing device conceived of and developed to monitor the evolution of swelling pressure and gas pressure during steam treatment and hydraulic conductivity after treatment under constant volume conditions. Although heat lag and thermal expansion were observed, the heating procedures were cautiously controlled and the swelling pressures were corrected, accordingly. Furthermore, the hydraulic properties of compacted bentonite during and after treatment were tested with a water-to-solid ratio of 1.3 and at different temperatures. Overall, the developed apparatus has demonstrated itself as an effective tool to better comprehend the interaction between bentonite and water vapor as regards to the temperature gradient and boundary conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1520/gtj20190026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu